
Automatically Detecting Online Deceptive Patterns
Asmit Nayak, Shirley Zhang∗, Yash Wani∗, Rishabh Khandelwal, Kassem Fawaz

University of Wisconsin – Madison

Abstract

Deceptive patterns in digital interfaces manipulate users into making unintended decisions, exploiting
cognitive biases and psychological vulnerabilities. These patterns have become ubiquitous on various
digital platforms. While efforts to mitigate deceptive patterns have emerged from legal and technical
perspectives, a significant gap remains in creating usable and scalable solutions. We introduce our
AutoBot framework to address this gap and help web stakeholders navigate and mitigate online deceptive
patterns. AutoBot accurately identifies and localizes deceptive patterns from a screenshot of a website
without relying on the underlying HTML code. AutoBot employs a two-stage pipeline that leverages
the capabilities of specialized vision models to analyze website screenshots, identify interactive elements,
and extract textual features. Next, using a large language model, AutoBot understands the context
surrounding these elements to determine the presence of deceptive patterns. We also use AutoBot, to
create a synthetic dataset to distill knowledge from ‘teacher’ LLMs to smaller language models. Through
extensive evaluation, we demonstrate AutoBot’s effectiveness in detecting deceptive patterns on the web,
achieving an F1-score of 0.93 when detecting deceptive patterns, underscoring its potential as an essential
tool for mitigating online deceptive patterns.

We implement AutoBot, across three downstream applications targeting different web stakeholders:
(1) a local browser extension providing users with real-time feedback, (2) a Lighthouse audit to inform
developers of potential deceptive patterns on their sites, and (3) as a measurement tool designed for
researchers and regulators.

1 Introduction
Deceptive patterns, also known as ‘Dark Patterns,’ are design choices that manipulate users into making
unintended decisions as they interact with applications. These patterns exploit cognitive biases and psy-
chological vulnerabilities to influence user behavior, often in ways that benefit the service provider at the
user’s expense [12, 13]. The growing use of deceptive patterns negatively impacts the quality of user expe-
riences across various online activities, such as online purchases, engaging with social media, playing video
games, or simply browsing the web [47]. The widespread nature of these patterns is well documented, with
notable examples from resources like Harry Brignull’s deceptive.design1 and Caroline Sliders’ analysis
at The Pudding2.

Despite the recent push toward better web experience, fueled by user awareness, media revelations,
and privacy regulations [17, 2], deceptive patterns continue to pose substantial challenges [39]. As a
result, users are at risk of harm, such as financial loss [61], privacy violations [8], and the exploitation of
vulnerable populations, including children [69]. In response, researchers have explored different approaches
to detect and classify deceptive patterns on the web. Earlier efforts included manual analysis to analyze
the distribution of deceptive patterns on the Internet [47, 30, 12]. Such approaches are infeasible at scale

∗Equal Contribution
1https://www.deceptive.design/
2https://pudding.cool/2023/05/dark-patterns/

1

ar
X

iv
:2

41
1.

07
44

1v
3 

 [
cs

.H
C

] 
 8

 S
ep

 2
02

5

https://www.deceptive.design/
https://pudding.cool/2023/05/dark-patterns/
https://arxiv.org/abs/2411.07441v3


Analyzing the provided image [...] the 
following DP can be identified:

Label: nudge
Reasoning:
The interface distinctly prioritizes the 
"Accept all cookies" [...] using a brighter, 
more prominent color (pink) 
compared to [the] "Reject all" button 
[which] is less prominent, next to the 
brightly colored [accept] option [...] due 
to its less saturated [...] background.

User Input

You are given a screenshot of a website 
and a taxonomy to detect deceptive 
designs. Your task is to follow the 
taxonomy and generate labels for each 
possible dark pattern present in the 
image and give a reasoning behind that 
choice.

Taxonomy:{...}

Based on the provided image and 
taxonomy, [...] DP identified:

Interface Interference - Nudge:

Reasoning: The [...] "Accept all cookies" 
button [is] visually more prominent 
and distinct compared to the other 
two buttons [...]. This [...] creates a 
nudge [...] over the alternatives [with] 
privacy control. [...]

User Input

You are given a screenshot of a website 
and a taxonomy to detect deceptive 
designs. Your task is to follow the 
taxonomy and generate labels for each 
possible dark pattern present in the 
image and give a reasoning behind that 
choice.

Taxonomy:{...}

GPT 4.5

Figure 1: OpenAI’s GPT4.5 incorrectly identifies the color of the “Reject All” button as being less prominent than
the other, leading to an incorrect classification of “nudge”. Similarly, Gemini 2.5 Pro incorrectly notes that the two
buttons in the cookie notices are visually distinct from each other, resulting in a misclassification of “nudge”.

due to the sheer volume, dynamic nature, and diversity of website interfaces. More recent efforts include
heuristic- and ML-based methods [12, 30, 47, 76, 68, 6, 18, 55, 46]. However, these approaches often exhibit
limited accuracy when identifying deceptive patterns in the wild, as we show later.

Recognizing the limitations of current approaches, there is a pressing need for automated tools to
assist web stakeholders in navigating and mitigating online deceptive patterns. Such an automated tool
must perform two primary tasks: 1) accurately identify deceptive patterns and 2) precisely localize their
position within the website. The ability to both identify and localize these patterns offers several benefits
to web stakeholders. First, web users can be alerted to deceptive patterns on websites they visit, enabling
informed decision-making. Second, regulators can leverage such tools to identify deceptive patterns at
scale, facilitating enforcement and policy development. Third, developers can gain insights into potentially
problematic elements within their websites, promoting more ethical design practices [70].

We propose an automated deceptive pattern detection framework, AutoBot, to address these limitations.
AutoBot accurately identifies and localizes the deceptive patterns from a screenshot of a webpage. It does
not rely on the underlying HTML code of the webpage, which tends to be less stable than screenshots.
HTML implementation and code can vary significantly across webpages and even different accesses, while
screenshots and text remain more consistent [35]. AutoBot adopts a modular design, breaking down the task
into two distinct modules and leveraging existing state-of-the-art models for each. Specifically, AutoBot
utilizes a Vision Module, which analyzes screenshots to accurately localize UI elements, extracting essential
features into a structured, text-only format (ElementMap). It feeds this ElementMap to a Language Module
that employs a Large Language Model (LLM) to analyze the ElementMap and assign a deceptive pattern
based on a defined taxonomy (Section 2.1).

AutoBot’s design avoids the pitfalls of directly prompting Vision Large Language Model (VLLM) for

2



end-to-end analysis. These models, as we show in Figure 1, are known to hallucinate, leading to false
positives undermining their reliability [64]. Furthermore, VLLMs currently lack the capability for accurate
localization of UI elements, as shown in recent works [19, 82] and in Section 4.4.2. While fine-tuning
VLLMs could potentially improve performance, the substantial demand for large annotated datasets and
significant computing resources renders this approach impractical [9].

AutoBot leverages the capabilities of specialized vision models to help with the localization task and
utilizes LLMs to perform accurate deceptive pattern identification. While LLMs have shown strong per-
formance in detecting deceptive patterns (see Section 5.3), large-scale use of these LLMs might be pro-
hibitive due to cost, latency, and privacy concerns. In this work, we show how we can create a synthetic
dataset using an LLM as the ‘teacher’ and distill its knowledge into smaller language models (SLMs), like
Qwen2.5-1.5B, and very small language models (vSLMs), like Flan-T5. We show a detailed evaluation of
these models in Section 5.3.

We demonstrate the practical applications of AutoBot in three instantiations, targeting different web
stakeholders. First, we design, and implement a browser extension (Section 7.1) using AutoBot to automat-
ically detect and highlight deceptive patterns on websites, providing real-time user assistance on personal
computers. Second, we create a custom Lighthouse audit (Section 7.2) that leverages AutoBot to inform
developers of potential deceptive patterns on their sites, integrating directly into developer workflows and
providing a quantifiable score. Third, we demonstrate how researchers and regulators can use AutoBot to
perform a large-scale measurement and analysis of the online deceptive patterns landscape (Section 7.3).
Our measurement on over 11,000 websites across popular (Tranco) and e-commerce (Shopify) domains high-
lighted the prevalence of deceptive patterns, with many websites exhibiting several patterns on a single
webpage.

2 Background and Related Works
Web deceptive patterns refer to website interface design choices that manipulate or deceive users into
making decisions they might not otherwise make [12]. Examples of such patterns include hidden costs,
forced continuity, misdirection in e-commerce websites, and privacy-invasive default settings in social media
platforms. Here, we present a filtered taxonomy to categorize web deceptive patterns based on existing
work. We also survey existing works on detecting deceptive patterns on websites.

2.1 Taxonomy for Deceptive Patterns
Brignull et al. presented the first taxonomy of deceptive patterns in 2010 [12]. Conti et al. expanded this
taxonomy to include ‘malicious interface designs’ [21]. Bösch et al. [11] introduced a similar taxonomy
called ‘privacy dark patterns’, which included more privacy-centric categories such as ‘Forced Registration’
and ‘Hidden Legalese Stipulations.’

More recently, Gray et al. [30] created a unified corpus to detect deceptive designs in user interfaces,
building on previous taxonomies and categories. Since then, various works have further adapted the
taxonomy for specific domains. For instance, Lewis et al. [40] codified deceptive patterns for mobile apps
and games, while Mathur et al. [47] adapted the taxonomy to focus on deceptive patterns present in
shopping websites. Work by Chen et al. [18] and Mansur et al. [46] extended the taxonomy to detect
deceptive patterns in mobile and web apps. Although prior works developed various taxonomies to classify
deceptive patterns, these efforts are inconsistent and often domain-specific. To address these issues, Gray
et al. [31] introduced a unified ontology of deceptive patterns integrating past literature across regulatory
reports and academic works.

2.1.1 Filtered Taxonomy

Since our work, like others in literature, focuses on detecting patterns at the page level, some patterns fall
outside its scope. For instance, the deceptive pattern ‘Sneak into Basket’ – where websites quietly add

3



Interface-Interference
➢ Confirmshaming
➢ Fake Scarcity/Fake Urgency
➢ Nudge

Forced Action
➢ Forced Action

Obstruction
➢ Pre Selection
➢ Visual Interference
➢ Jargon

Sneaking
➢ Hidden Subscription
➢ Hidden Costs
➢ Disguised Ads
➢ Trick Wording

Non-Deceptive
➢ Not-Applicable

Figure 2: Taxonomy of Deceptive Patterns. AutoBot classifies text elements into five high-level deceptive pattern
categories: Interface Interference, Obstruction, Forced Action, Sneaking, and Non-Deceptive.

unwanted items like magazine subscriptions to a user’s cart – creates an unwanted transaction that would
require the detection system to understand user action across multiple pages over a period of time.

We classify deceptive patterns into two types – (1) static patterns with no temporal dimension and are
visible upon page render, and (2) dynamic patterns that rely on user interactions or time-based triggers
related (e.g., ‘Nagging,’ ‘Hard-to-Cancel,’ and ‘Bait-and-Switch’). Since our system relies on screenshots,
in this work, we limit our analysis to static deceptive patterns, as defined in Figure 2. The detection of
dynamic patterns requires temporal analysis of the webpages, which is out of scope for this work. Our
system presents a building block for future systems to detect dynamic patterns by analyzing webpage code,
temporal activities, and performing actions.

We filter Gray et al.’s ontology [31] focusing only on static deceptive patterns. Figure 2 shows the filtered
taxonomy, comprising four high-level categories and 11 low-level sub-types. The complete taxonomy is
provided in Section 11.1. This taxonomy includes several high-level categories from Gray et al. [31]. It
includes the sub-types from the Brignull et al. taxonomy [12], which map to low-level patterns in Gray
et al.’s ontology. These sub-types include textual descriptions of the pattern, which we use to prompt the
LLMs, as shown later. We map our taxonomy to Gray et al.’s ontology [31] in Section 11.3. Finally, the
taxonomy excludes a subset of the deceptive patterns that cannot be detected through screenshots, i.e.,
the dynamic ones.

2.2 Detecting Deceptive Patterns
Researchers developed several mechanisms to detect and measure the prevalence of online deceptive pat-
terns [12, 30, 47, 76, 68, 6, 18, 55, 46]. Curley et al. categorized earlier manual, automated, or semi-
automated detection mechanisms [24].

2.2.1 Human-based Manual Annotations

Early efforts to identify online deceptive patterns relied on manual exploration. Brignull et al. [12] manually
explored the web to compile a “Hall of Shame”: a list of websites with deceptive patterns. Gray et al. [30]
expanded this corpus by performing keyword searches on social media for posts highlighting websites with
deceptive patterns, which were then manually validated. While highly accurate, this methodology is limited
to domain experts and lacks scalability due to manual validation requirements. To expedite the manual
exploration process, Mathur et al. [47] proposed a clustering-based pipeline to group similar websites based

4



on their text content, which is then manually inspected. Although this process accelerates data collection,
it still lacks scalability.

2.2.2 Probabilistic Text & Image Models

Attempts to automate the manual inspection process include Tung et al.’s Naive Bayes classifier [76], Soe
et al.’s gradient-boosted tree to flag texts showcasing deceptive patterns [68], and Adorna et al.’s combined
Naive Bayes classifier and VGG-19 model to identify deceptive designs in cookie notices [6]. However, these
works are often domain-specific and cannot readily generalize to new domains. Additionally, most works
rely solely on text-based classifiers or heuristics, limiting their ability to detect visual deceptive patterns,
such as those based on colors or trick wording.

2.2.3 Heuristic Based Methods

Recent works by Chen et al., Mansur et al., and Raju et al. [18, 46, 55] focus on automated detection
of deceptive patterns in mobile apps. Chen et al. [18] and Mansur et al. [46] used predefined heuristics,
limiting detection to simpler deceptive patterns like disguised ads. Prior works used the HTML code of
websites to identify and detect deceptive patterns. For example, Raju et al. [55] employed rule-based
source code analysis to detect patterns like ads, forced action, and nagging [55]. However, due to the
versatile and open nature of HTML, this task proves to be very challenging. While HTML implementation and
code vary significantly across webpages, and even across different accesses of the same page, screenshots
and text remain more consistent. As a result, recent approaches have moved completely towards text or
screenshots of websites to detect and identify deceptive designs.

2.2.4 Classical ML Models

In the broader domain of Privacy, Safety, and Security (PSS), researchers have developed tools to help
users navigate specific deceptive designs on websites. For instance, works by Khandelwal et al. [35, 36]
enable users to find and adjust privacy settings and automatically disable non-essential cookies. Similarly,
OptOutEasy by Kumar et al. [10] automatically finds opt-out links from privacy policies and surfaces them
to users. These domain-specific approaches do not readily apply to deceptive pattern detection as they
require retraining for each deceptive pattern.

2.2.5 Large Language Models (VLLMs)

Prior work have explored using LLMs to detect deceptive patterns. Sazid et al. [59] used GPT-3.5-Turbo
to detect deceptive text with 92.57% accuracy, athough their method is limited to singular text lines,
only 7 types of patterns, and ignores any surrounding visual or textual context. Similarly, Schäfer et
al. [60] utilized GPT-4o to remove deceptive elements from synthetic HTML, reducing manipulativeness
in 91% of cases. This approach, however, is constrained due to the versatile and non-standardized nature
of HTML [71] and the challenge of fitting inflated, real-world website source code into an LLM’s context
window.

More recently, a concurrent work with ours, Shi et al. [64], introduces DPGuard to automatically detect
deceptive patterns from screenshots of mobile apps and websites by directly prompting VLLMs. We show
later in Section 3 that VLLMs perform poorly in detecting deceptive patterns from screenshots and are
often prone to hallucinations and false positives. Additionally, DPGuard only detects the presence of
these deceptive patterns without any positional reference. Our work identifies deceptive patterns with
significantly higher accuracy and extracts their positions, enabling us to show users exactly where these
patterns occur.

5



Text Top-
Coordinates

Bottom-
Coordinates

Font 
Size

Background 
Color Font Color

Stack 
Exchange (41, 33) (172, 53) 19 Woodsmoke, 

(RGB: 12, 13, 14)
Curious Blue,

(RGB: 55, 151, 230)
... … … … ... …

Accept all 
cookies (772, 35) (826, 51) 18 Picton Blue, 

(RGB: 12, 13, 14)
Black, 

(RGB: 0, 0, 0)

Element X1 Y1 X2 Y2

text 45 33 170 50

… … … … …

button 780 33 850 70

Text Element Top-
Coordinates […]

Stack 
Exchange text (41, 33) […]

… … … […]
Accept all 
cookies button (772, 35) […]

UI Detector

Text Extractor
You are an helpful AI. You 
given a special CSV file 
with values separated by 
pipe (|), containing 
tabular data in text 
format from a website 
and a taxonomy to detect 
deceptive patterns. …

Text Element […] Deceptive 
Category

Deceptive 
Subtype Reasoning

Stack 
Exchange text […] non-

deceptive
not-

applicable

Standard 
element, not 

deceptive
… … […] … … …

Accept all 
cookies button […] forced-

action
forced-
action

No easy reject 
option; must 
accept all or 
customize.

Prompt Applications

Ex
te

ns
io

n

Lighthouse

ElementMap
LLM

Classifications with Reasoning

Screenshot

Vision Module Language Module
AutoBot

Figure 3: Overview of AutoBot’s working process. AutoBot takes a screenshot through a multi-stage framework
consisting of the Vision Module and the Language Module, and returns the Deceptive Pattern classification, Subtype,
and reasoning for each element in the screenshot. The results are then used by applications such as browser extensions
and Lighthouse.

3 System Overview
This work presents AutoBot, an end-to-end framework that identifies the deceptive patterns and extracts
their positions on a webpage. After receiving a screenshot of a webpage, it identifies UI elements on the
page and feeds the identified elements along with the associated text to an LLM. The output is a mapping
of each element to a corresponding deceptive pattern from Section 2.1.

Why Screenshots? Prior works analyzing websites [35, 36] have primarily relied on HTML analysis.
This approach faces significant challenges due to the dynamic nature of websites. Websites increasingly
employ JavaScript frameworks that modify the Document Object Model (DOM) on the fly, rendering static
HTML analysis insufficient. Furthermore, the diversity in the coding practices and obfuscation techniques
provide additional challenges in HTML-based analyses. To address these challenges, AutoBot adopts a novel
approach focusing on the invariant aspect of websites: the user experience. By leveraging the visual
signals and associated text, AutoBot models how users perceive and interact with websites. This approach
offers several advantages: (1) It is resilient to change in underlying technologies as it captures the actual
rendered content. (2) It allows us to analyze the same information that the user encounters, providing a
more accurate representation of the potential deceptive patterns.

Vision Large Language Models (VLLMs) Recent advances in VLLMs offer a venue for analyzing
screenshots and highlighting patterns with proper prompting. To this end, we empirically evaluate the
effectiveness of GPT4.5 [5] and Gemini 2.5 Pro [72] in detecting web deceptive patterns. Our experiments
showed that while these models can detect deceptive patterns, but they often hallucinate and give false
positive answers. As shown in Figure 1, both Gemini 2.5 Pro and GPT-4.5 struggle to identify the
deceptive patterns in screenshots. A recent work in this domain by Shi et al. [64], DPGuard, uses these
models directly to detect, not localize, deceptive patterns. Consistent with Shi et al.’s evaluation, we
find that DPGuard faces performance issues, struggling to generalize over a variety of websites (refer
to Section 6), achieving only a macro score of 0.3452 in detecting deceptive patterns on websites.

In addition, VLLMs frequently struggle with the precise location of elements in an input image [19, 82,
41], and cannot be used to localize deceptive patterns out of the box. However, when given bounding box
coordinates, these models can effectively reason about the spatial arrangements of objects [65].

Modules AutoBot leverages the above insights to automatically detect and localize deceptive patterns on
websites, as shown in Figure 3. It breaks the localization problem and deceptive pattern detection into two
tasks: vision and language. This breakdown allows AutoBot to independently leverage vision techniques
for the precise localization of elements and powerful language models for the accurate classification of
patterns.

6



1. Vision Module: The Vision Module maps a screenshot of a webpage to a table of elements as shown
in Figure 3. We refer to this tabular representation as ElementMap. The ElementMap contains
the text associated with the element along with its other features: element type, bounding box
coordinates, font size, background color, and font color. This module addresses the issues of high
false positive rates and localization by parsing the screenshot of a webpage.

2. Language Module: The Language Module (Section 5) takes the ElementMap as input and maps
each element to a deceptive pattern from the taxonomy in Section 2.1. This module reasons about
each element considering its spatial context and visual features. We explore different instantiations
of this module with different trade-offs in terms of cost, need for training, and accuracy.

4 Vision Module
The Vision Module generates an ElementMap from a screenshot of the website through the following three
steps, as shown in Figure 3.

1. Text Extraction: Extract the text, the bounding boxes of the text, and the associated features
from the screenshot.

2. Web-UI Element Detection: Localize UI elements, extract their bounding boxes, and identify
their types from the screenshot.

3. ElementMap Generation: Merge the results of the above steps into a tabular representation of
the website to generate an ElementMap.

4.1 Text Extraction
The Text Extraction step starts by performing Optical Character Recognition (OCR) on the website
screenshot. We employ the Google Vision OCR API 3 as it has high accuracy in extracting text from
images of varying scales and resolutions. The API returns blocks of detected text. We concatenate these
blocks based on proximity to form coherent text blocks. These blocks are a list of bounding boxes with
their respective text content. Then, we retrieve the font size, font color, and background color of each
bounding box, as illustrated in Figure 3. We calculate font size by subtracting the bottom y-coordinate
from the top y-coordinate of the bounding box. To determine color information, we utilize the extcolors [16]
package, extracting the most prominent color (background) and the second most prominent color (font).

This approach addresses a key limitation identified by Soe et al. [68] in the previous ML methods: the
lack of representation of the UI richness that a user perceives, such as text placement and contrast between
the font and background colors. Our approach captures these detailed text features, along with the relative
location of text elements on the website, providing a comprehensive representation of the textual content
experienced by users.

4.2 Web-UI Element Detection
The Web-UI Element Detection step uses the same screenshot to identify and localize these 7 Web-UI
Elements: buttons, checkboxes ( , ), radio buttons ( , ), and toggle switches ( , ). This step
provides context to the extracted text and enables a more comprehensive understanding of the webpage’s
structure. For instance, distinguishing between a clickable button and a static text block can be significant,
as a seemingly simple text might be a deceptive call to action when recognized as a button. Similarly,
identified checkbox states (checked or unchecked) can reveal pre-selected options that users might overlook.

3https://cloud.google.com/vision/docs/ocr

7

https://cloud.google.com/vision/docs/ocr


In the following, we describe how we survey existing Web-UI detection methods and the underlying
datasets. As we find these methods and datasets to not be appropriate for the deceptive patterns detection
task, we describe how we train a real-time Web-UI Element Detector using YOLOv10 on a custom dataset.

Limitations of Existing Web-UI Detection Methods While Web-UI Element Detection is a well-
studied problem, the existing approaches face several limitations in our deceptive pattern detection task.
Detectors like Ominparser 2 [44], Ferret UI 2 [42], UEID [80], and Element Detector [79] do not distinguish
between checked and unchecked states. Detectors like UISketch [62] report low performance on real-world
websites. ScreenRecognition [84] shows promise for this step but was trained on mobile screenshots and is
closed-source, preventing its use or testing on websites.

Limitations of Existing Web-UI Datasets To improve the detector performance, we explored mod-
ifying existing datasets used to train them. Omniparser 2 uses a manually annotated dataset of popular
websites, but the dataset is not public [44]. UEID [80] was trained on the RICO Dataset [43], which
contains manually annotated mobile app UIs. We could not modify this dataset to train a detector for
webpages. Ferret UI 2 [42] and Element Detector [79] use WebUI [79], a popular framework with 400k
websites which is publicly available, but the automatically computed labels from accessibility trees4 are
noisy and miss a lot of elements on a given website [79, 78]. UISketch contains hand-drawn images to
identify Web-UI Elements based on their sketches and does not generalize well to real-world websites [62].

4.2.1 Dataset Curation

We develop a novel approach to create a diverse and representative dataset to address the lack of suitable
Web-UI Element Dataset for training our Web-UI Element Detector, as shown in Figure 4. Instead of
relying on manual scraping and labeling [84, 62, 81, 44], we leverage AI-powered tools to generate a
synthetic dataset that reflects the current web landscape. Our approach allows for precise control over
element positioning and labeling, which allows us to scale the dataset generation.

We generated 2.5K ideas for diverse websites using GPT-4 [5]. We passed these ideas to v05 (re-
fer to Section 11.4 for examples), an AI-based website generator, to generate three websites per idea.
v0 uses shadcn [63], a customizable UI-Library, which allows us to get bounding boxes and the state
(checked/unchecked) of every UI element. Three members of the research team manually verified the 7.5K
websites generated by v0. With a failure rate of less than 2%, this process was relatively fast, as errors in
websites are detected by the compiler. These errors consisted mainly of typos and missing libraries that
the researchers manually fixed. We then rendered each v0 generated website (7.5K) using randomized
components from 6 popular UI-libraries, like Material UI and Bootstrap6. This process resulted in 62K
screenshots, where each screenshot had a bounding box and a label for each UI element. Recall that we
have 7 labels for the UI elements. We refer to this dataset as the Web-UI Elements Dataset.

4.2.2 Training Web-UI Element Detector

We use the Web-UI Elements Dataset to train an ensemble of YOLOv10 models. In particular, we randomly
divide the dataset into a training set consisting of 85% of the images and a validation set consisting of
the remaining 15%. We present the performance of the trained ensemble in Section 4.4.2 on real-world
websites.

Why YOLOv10? We adopt the YOLOv10 model (You Only Look Once (YOLO) architecture [75], a
real-time object detector for recognizing UI elements from a screenshot. We chose YOLOv10 over Convo-
lution Neural Networks (CNNs) [35, 46, 18] and VLLMs like Molmo [25]. CNN-based detectors, such as

4Accessibility trees are generated using aria labels which developers have to optionally add to a website.
5https://v0.dev/
6https://mui.com/material-ui/, https://getbootstrap.com/

8

https://v0.dev/
https://mui.com/material-ui/
https://getbootstrap.com/


Idea Datasets

Prompting to 
Generate Ideas

Website 
Generator

Synthetic 
Website Dataset

Website Generation

Manual Verification

UI Library 
Randomizer 60K+ 

Screenshots

85% 
Train Set

15% 
Val Set

Web-UI Detector

Figure 4: Pipeline of Generating Web-UI Element Dataset to train YOLOv10. We used GPT-4 to generate 2.5K
ideas (Idea Datasets), which were then processed by v0 to create 7.5K websites (Synthetic Website Dataset). After
manually verifying these sites for rendering errors and randomizing their UI library, we capture over 60K screenshots
to train our YOLOv10 model.

Faster R-CNN [57], provide predictions with high accuracy, but require considerable computational power
and time [56, 57]. VLLMs, despite their strong capabilities in understanding image context, demonstrate
significant limitations in image classification tasks [85], specifically object detection tasks [83]. Evaluating
Molmo [25] on detecting Web-UI Elements yielded poor results, as shown in Table 1. YOLO models are com-
paratively lightweight, around 40MB, allowing for various deployment options without requiring extensive
compute resources.

Ensemble of YOLOv10 During training, we observed that YOLOv10 models could not distinguish
between the 7 labels (first column of Table 1) accurately. We attribute the reason to the labels being
visually similar, such as a checked switch and a checked radio button. As such, we trained three YOLOv10
models, each focused on distinguishing between 2-3 different elements. The first model labeled button and

; the second labeled , , and ; and the third labeled and . We found that each model performed
much better than one trying to handle all the classes at once. The same observation has been made in
literature before for YOLO-based object detection [48, 74, 53]. We combined the outputs of the three
models by simply performing a union over the detected UI elements. In case of overlap, we took the label
with the higher confidence classification. We refer to this detection method as the YOLOv10 Ensemble.

4.3 ElementMap Generation
The ElementMap Generation step merges the Web-UI Elements from the Web-UI Element Detector with
the text blocks from the Text Extraction step. In particular, it iterates over each detected Web-UI Element
and applies spatial heuristics depending on the element type to find the most likely text block corresponding
to the element. For example, buttons are matched based on overlap, while checkboxes and radio buttons
are paired with nearby text. The closest matching text block is then relabeled with the element type.
This labeling results in an ElementMap, where each row contains an element label, the text, the bounding
box coordinates, the font size, the background color, and the font color. The Language Module uses the
ElementMap to detect the deceptive patterns on a page.

9



4.4 Vision Module Evaluation
We create a dataset to evaluate the real-world performance of the YOLOv10 ensemble.

4.4.1 Vision Dataset

We curate a labeled dataset of UI elements from the deceptive pattern websites dataset of Mathur et al. [47].
We manually annotated over 1.5K website screenshots using Label Studio [73]. In particular, one author
manually annotated each screenshot by drawing bounding boxes around each UI element and assigning
it a type. The type is one the 7 Web-UI Elements: buttons, checkboxes ( , ), radio buttons ( , ),
and toggle switches ( , ). Another author independently verified the annotations. Both authors then
discussed and resolved the conflicts in annotations. We refer to this dataset as the Real-UI Dataset.

4.4.2 Vision Module Evaluation

We measure the accuracy of the YOLOv10 ensemble of models on the Real-UI Dataset. We report our
results using the IoU metric, which measures the overlap between the predicted bounding box and the
ground truth box by dividing the area of their intersection by the area of their union. A higher IoU
indicates better localization accuracy, and we consider a detection to be correct if the IoU exceeds 0.5 and
the model confidence exceeds 0.3. We choose a lower IoU threshold to account for the distribution shift
between training on a synthetically labeled dataset and a human-annotated one. The bounding boxes from
both will be different. Using a high IoU threshold would result in more false negatives, which would affect
the subsequent steps in AutoBot’s pipeline.

Table 1: Performance of the YOLOv10 Ensemble and Molmo [25] on our Real-UI Dataset

Class Precision Recall F1-Score # Elements
YOLO Molmo YOLO Molmo YOLO Molmo

button 0.94 0.87 0.88 0.41 0.91 0.55 5226
0.85 0.97 0.95 0.47 0.89 0.63 113
0.98 0.92 0.76 0.44 0.86 0.60 246
0.85 0.86 0.93 0.29 0.89 0.43 76
0.86 0.84 0.89 0.35 0.87 0.49 132
0.96 0.96 0.98 0.42 0.97 0.59 52
0.91 0.93 0.94 0.47 0.93 0.63 34

Total 0.91 0.90 0.91 0.42 0.91 0.57 5879

Table 1 shows the F1-scores of our YOLOv10 Ensemble and Molmo [25] for each of the 7 classes. We
observe that the ensemble outperforms Molmo for all the UI elements. Note that few-shot prompting of
local VLLMs is not possible for image inputs. The ensemble exhibits a relatively lower performance on
the unchecked radio button and unchecked check box, because they look visually similar to the other UI
elements.

5 Language Module
The Language Module assigns a deceptive pattern (from the taxonomy in Section 2.1) to each element
present in an ElementMap. This is the input/output structure of the language module as shown in Figure 5.

10



i Text Element Top
Coordinates

Bottom
Coordinates

Font
Size

Background
Color

Font
Color

0
Accept 
all 
cookies

text (41, 33) (172, 53) 19 RGB: 12, 13, 14 RGB: 55, 151, 230

… … … … … … … …

n … … … … … … …

i Deceptive
Category

Deceptive
Subtype Reasoning

0
forced-
action

forced-
action

No easy reject option;
must accept all or 

customize.… … … …

n … … ….

ElementMap

LanguageModuleClassification with Reasoning

Figure 5: The input and output structure of our language module. The input ElementMap consists of key features
of a web element, and the output contains a deceptive category, subtype, and reasoning of classification.

5.1 Possible Solutions
Prior works have shown that LLMs [49] are suitable for reasoning tasks similar to our task. These models
fall into three categories: 1) large Language Models (LMs) like Gemini and GPT-4, 2) small LMs such as
Gemma and Qwen, and 3) very small LMs like T5. These models have varying capabilities and trade-offs, as
described in Table 2.

Table 2: Comparison of Language Models: Gemini vs Qwen2.5 vs T5

Feature Large LM Small LM Very Small LM
Size (parameters) Large (>200B) Medium (1.5B) Very Small (700M)
Context Window 1M 128K <1K
Deployment Cloud API only Can be run locally Can be run locally
Required Memory N/A ∼4.5 GB ∼700MB
License Proprietary Open Source Open Source
Latency Higher Medium Very low
Cost High Free Free
Data Privacy Data leaves device Data stays on device Data stays on device

5.1.1 Large Language Models (LLMs):

LLMs are very effective at performing a wide range of tasks [23, 7, 66] and are able to closely follow user
instructions [52, 86]. However, as shown in Table 2, using these LLMs is cost-prohibitive and has potential
data privacy concerns [3].

11



5.1.2 Small Language Models (SLMs):

Unlike LLMs that follow complex instructions when performing a task, SLMs often struggle to do so. This
limitation of SLMs can be overcome by fine-tuning them on specific tasks, improving their performance to
match that of LLMs [45]. Moreover, as shown in Table 2, SLMs have two key advantages over LLMs: 1)
being compute efficient, they can be deployed locally across a wide range of platforms, and 2) they alleviate
any data privacy concern associated with API based LLMs.

5.1.3 Very Small Language Models (vSLMs):

SLMs, while compute-efficient, are not the best solution to use in an extremely resource-constrained plat-
form, such as in-browser or on devices with no specialized GPU. In such environments, we can leverage
vSLMs like Flan-T5 [20]. Models like Flan-T5 need to be finetuned or distilled from LLMs for specific
tasks to achieve high accuracy [33]. We show the detailed distillation steps we performed in Section 5.2.4.

In summary, we observe that large LMs, such as Gemini, are considerably effective in detecting deceptive
patterns from an ElementMap. However, as described in Table 2, utilizing such large and closed-source
models presents challenges like high usage cost, considerable latency, and potential data-privacy concerns
as the ElementMap is sent to an external service. Smaller LMs such as Qwen and T5 address these challenges
and have been shown to perform well on such specific tasks after finetuning [45, 33].

5.2 Our Solution
To combine the strengths of large and small LMs, we adopt a distillation approach where we use large LMs
as teachers and small LMs as students to complete our task. Specifically, we create a synthetic dataset of
deceptive pattern classification from ElementMap using Gemini. We then use this dataset to distill smaller
student models, i.e., Qwen and T5. As such, AutoBot comprises three language models to detect deceptive
patterns, each presenting different trade-offs as described in Table 2.

5.2.1 Prompting the LLM

We utilize proven techniques like Chain-of-Thought (CoT) [77], few-shot prompting [15], and prompting
the model to reason about its classification [51, 32, 49] to help the model understand the task and identify
deceptive patterns. Specifically, our system prompt, Psystem7, provides the LLM with a plan on how to
detect deceptive patterns and instructs the LLM to generate three columns — Deceptive Category, Deceptive
Subtype, and Reasoning — for each element in the ElementMap, as shown in Figure 5. This prompt allows
us to not only generate precise labels and the associated reasoning but also minimize hallucinations. An
added benefit of generating the classification with ‘Reasoning’ is that we can use these ‘rationales’ to
further train smaller LMs. This Distilling Step-by-Step methodology has been shown to be very effective
by Hsieh et al. [33].

During our initial evaluation of Gemini 1.5 Pro, using Psystem, we observed that the model could
identify all deceptive patterns in the ElementMap, but would often mis-classify ‘non-deceptive’ patterns
as deceptive, resulting in a high false positive rate and a low precision score. To address this problem,
we utilized the Gemini 2.0-Flash-Thinking reasoning model. Reasoning models have shown promising
results in being able to reason about a task [45, 51]. We prompted the LLM to re-evaluate the elements
identified as deceptive and correct misclassifications7. Next, we utilized the Gemini 2.0-Flash-Thinking
model to re-verify the labels on every website with one or more elements classified as deceptive. This
additional step in generating the labels, significantly reduced the number of false positives we observed.
We note that we do not use this model as our base model because of its limited availability, making it
infeasible to be used at scale. We show that this approach results in high precision and recall in Section 5.3.

7Please find the system prompt under Files here: https://osf.io/tha2d/?view_only=
4fd2116fa2e94c99857679eddfea5937

12

https://osf.io/tha2d/?view_only=4fd2116fa2e94c99857679eddfea5937
https://osf.io/tha2d/?view_only=4fd2116fa2e94c99857679eddfea5937


5.2.2 Creating Distillation Dataset

We create Ddistill by scraping and analyzing 11K websites from the Tranco list [54]. We filter out non-
English websites using the langdetect library [67] and adult websites using the NudeNet package [50],
leaving us with 6,626 websites. For these websites, a significant portion was non-deceptive or had very few
deceptive patterns. To increase websites with deceptive patterns, we opted to look at e-commerce websites,
as these websites tend to have deceptive patterns [47]. As such, we analyze an additional 4,492 featured
websites from Shopify Partners Directory8.

Overall, we have 11,118 websites in our dataset. We run AutoBot on these websites, using the Gemini
1.5 Pro and Gemini 2.0 Flash-Thinking models. To reduce randomness and have deterministic outputs,
we limit the temperature = 0 and topp = 0.1 [58]. We incorporate the final classification and reasoning
produced by AutoBot in Ddistill. The distribution of samples (a sample is defined as a single row of the
ElementMap) is shown in Table 3.

Table 3: Distribution of Samples in Ddistill.

Category Subtype # Samples
Non Deceptive Not Applicable 160934
Forced Action Forced Action 3403

Interface Interference
Nudge 1335
Fake Scarcity / Fake Urgency 933
Confirmshaming 428

Obstruction Visual Interference 689
Pre-Selection 234

Sneaking
Trick Wording 904
Hidden Costs 233
Hidden Subscription 3495
Disguised Ads 5980

5.2.3 Distilling Small Language Models (Qwen2.5-1.5B)

DeepScaleR [45] has shown that small language models (SLMs) finetuned for specific tasks are able to
mirror the performance of larger models on those same tasks. Using this insight, we distill a Qwen2.5-1.5B
model to be able to mimic Gemini’s performance at detecting deceptive patterns. We use the Ddistill
dataset to perform full-finetuning of the Qwen2.5-1.5B model. As shown in Table 3, the distribution of
samples in the distillation dataset is highly imbalanced, with over 92% of the samples being ‘non-deceptive’.
Training on such an imbalanced dataset may introduce bias towards the majority class [38]. To mitigate
such bias, we perform Random Under Sampling of the ‘non-deceptive’ class, which has shown to improve
performance [26], to achieve a more balanced distribution of about 55% ‘non-deceptive’ samples. Our
distilled version of Qwen2.5-1.5B was trained on 34.7M tokens on 4 Nvidia-A6000 GPUs for 2 epochs. We
present the performance of the trained SLM in Section 5.3.

8https://www.shopify.com/partners/directory

13

https://www.shopify.com/partners/directory


5.2.4 Distilling Very Small Language Models (T5):

To distill the knowledge from LLMs into very small language models like T5, we use and improve the
paradigm introduced by Hsieh et al. [33]. We split Ddistill into 90% training and a 10% validation set
grouped by the sites from which the samples were extracted. This ensures that samples from the same site
are not present in training and testing sets. We formally define the training dataset, Dtrain, as:

di ∈ Dtrain ⊂ Ddistill (1)
di = (xi, yi, zi, ri) (2)

where Dtrain is a subset of the balanced Ddistill from Section 5.2.3. Here, xi represents the input to classify,
yi represents the deceptive design category, zi represents the deceptive design subtype, and ri represents
the associated reasoning for the category and subtype. Since, the context window of T5 is significantly
smaller than that of SLMs and LLMs, for each web element that is to be classified, xi, we provide its
neighboring web elements, in a sliding window fashion: xi−1→i−n to xi+1→i+n. For the distillation task,
we used n = 4.

Baseline Approach Based on this initial methodology, we train a T5 model, f , on a multi-task problem:
predict the deceptive design category, subtype as the label, and reasoning as the rationale. We use the
task-specific prefix [classify] to generate the label and [reason] for the reasoning.

We define the model and loss functions as:

f(x, t) =

{
(ŷi ⊕ ẑi), if t = [category]
r̂i, if t = [reason]

(3)

L = Llabel + αLreason (4)

Here, Llabel and Lreason are the label prediction loss and reason generation loss, respectively, and are
defined as:

Llabel =
1

N

N∑
i=1

ℓ(f(xi, tcategory), yi ⊕ zi) (5)

Lreason =
1

N

N∑
i=1

ℓ(f(xi, treason), ri), (6)

where ℓ is the cross entropy loss between the predicted and target tokens, and ⊕ is a string concatenation
function.

Each web element that is to be classified, xi, is provided alongside its neighboring web elements,
xi−1→0 to xi+1→N . The model’s performance is measured as the exact match of its [category] outputs
with the ground truth data. An example of the model’s sample input and expected output is shown below.

Input Sample
Input: [category]: Line 14,Preferences,checked checkbox,...</s>Line 10,"MAGIC We use
cookies to personalise ...</s>Line 11,COMING SOON ,text,...</s>

Output: obstruction,pre-selection

Input: [reason]: Line 14,Preferences,checked checkbox,...</s>Line 10,"MAGIC We use cookies
to personalise ...</s>Line 11,COMING SOON ,text,...</s>

Output: Cookie banner option is pre-selected to indicate users to allow extra cookies.

14



After training T5 on the Ddistill dataset for 2 epochs , we observed the training accuracy to saturate to
~48%. Here, accuracy refers to the correct prediction of both category and sub-types.

Our Approach: To overcome the low accuracy in the baseline approach, we split the labeling task into
two separate tasks: category and subtype, introducing an additional “task prefix” [subtype] for the new
task. We redefine the model and loss function to:

f(x, t) =


ŷi, if t = [category]
ẑi, if t = [subtype]
r̂i, if t = [reason]

(7)

L = α(Lcategory + Lsubtype) + (1− α)Lreason, (8)

where α is a tuning factor.
By separating label into category and subtype in addition to the reason tasks, the model can learn

the relation between the category and the subtype and how they both relate to the reasoning. A sample
of the new inputs and expected outputs is shown below.

Input Sample
Input: [category]: Line 14,Preferences,checked check-box,...</s>Line 10,"MAGIC We use
cookies to personalise ...</s>Line 11,COMING SOON ,text,...</s>

Output: obstruction

Input: [subtype]: Line 14,Preferences,checked checkbox,...</s>Line 10,"MAGIC We use cookies
to personalise ...</s>Line 11,COMING SOON ,text,...</s>

Output: pre-selection

Input: [reason]: Line 14,Preferences,checked checkbox,...</s>Line 10,"MAGIC We use cookies
to personalise ...</s>Line 11,COMING SOON ,text,...</s>

Output: Cookie banner option is pre-selected to indicate users to allow extra cookies.

After training the T5 model on the new loss function and tasks using the same ground truth dataset
and the same number of epochs, we observe the test accuracy of detecting deceptive patterns saturate to
∼95%. We present these results in the following section.

5.3 Language Module Evaluation
We create a dataset to evaluate the real-world performance of the different models in the language module.

5.3.1 Language Dataset

To evaluate the Language Module of our pipeline, we curate a dataset, referred to as LangEval dataset. In
particular, we randomly choose 200 websites from the D3 Dataset (in particular the Mathur et al. portion)
described in Section 6.1. Next, for these 200 websites, one of the authors manually annotated the UI
element classifications in the ElementMap to provide ground truth UI labels. Thus, the LangEval dataset
contains the manually labeled ElementMap of each website associated with the manually labeled deceptive
patterns.

5.3.2 Evaluating Language Models

We evaluate the various language models discussed in this section on the LangEval dataset. The perfor-
mance is shown in Table 4. We report the performance of the language models in two ways:

15



1. Binary Classification: This metric assesses models’ ability to detect whether a UI element is deceptive,
regardless of the specific categorization. We use this metric as it provides a performance measure while
considering the inherent subjectivity of deceptive pattern classification – an element classified as ‘trick-
wording’ could also be classified as ‘hidden-cost’. This classification is provided at the bottom of each
evaluation table, with labels: “Deceptive” and “Non-Deceptive”.

2. Class-wise Classification: This is the detailed classification result, across categories and subtypes, be-
tween the ground truth data and the model-generated result.

Table 4: Performance of different models in LanguageModule on LangEval. The table has three sections, each
showing performance at the category, subtype, and binary levels

Pattern Type Precision Recall F1-Score
Gemini Qwen T5 Gemini Qwen T5 Gemini Qwen T5

C
at

eg
or

y Non Deceptive 1.00 0.98 1.00 0.99 0.99 0.93 0.99 0.98 0.96
Forced Action 0.89 0.85 0.84 0.79 0.83 0.86 0.84 0.84 0.85
Interface
Interference 0.85 0.79 0.51 0.85 0.55 0.69 0.85 0.65 0.59

Obstruction 0.53 0.49 0.17 0.91 0.95 1.00 0.67 0.64 0.29
Sneaking 0.87 0.73 0.50 0.96 0.71 0.84 0.91 0.72 0.63

Su
bt

yp
e

Not Applicable 1.00 0.98 0.99 0.99 0.99 0.89 0.99 0.98 0.94
Confirmshaming 0.80 0.90 0.86 0.80 0.82 1.00 0.80 0.86 0.92
Disguised Ads 0.76 0.58 0.33 0.96 0.58 0.73 0.85 0.58 0.46
Fake Scarcity /
Fake Urgency 0.96 0.91 0.61 0.93 0.63 0.76 0.95 0.75 0.68

Forced Action 0.89 0.85 0.78 0.79 0.83 0.88 0.84 0.84 0.82
Hidden Costs 0.60 - 0.05 0.60 - 0.20 0.60 - 0.08
Hidden
Subscription 0.90 0.78 0.56 0.95 0.72 0.77 0.92 0.75 0.64

Nudge 0.74 0.57 0.17 0.80 0.37 0.68 0.77 0.45 0.28
Pre-Selection 0.67 0.65 0.33 1.00 1.00 1.00 0.80 0.79 0.50
Trick Wording 0.86 0.61 0.34 0.80 0.61 0.47 0.83 0.61 0.39
Visual
Interference 0.50 0.36 0.06 0.83 0.80 1.00 0.62 0.50 0.11

Deceptive 0.89 0.84 0.65 0.95 0.80 0.95 0.92 0.82 0.77
Not Deceptive 1.00 0.98 0.99 0.99 0.99 0.95 0.99 0.98 0.97

These results highlight the trade-offs between the different language models. As expected, Gemini
exhibits the highest performance, reaching near perfect precision and recall on most deceptive patterns. It
struggles in two pattern subtypes: hidden-costs and visual interference. In second place is the Qwen model,
which struggles in more subtypes. The distilled T5 model exhibits generally acceptable performance, but
struggles for pattern categories: interface-interference and obstruction.

6 End-to-End Evaluation
We perform an end-to-end evaluation of AutoBot on a real-world dataset, consisting of 1.1K websites,
manually annotated by 2 authors (described in Section 6.1). We perform our evaluation with all three
LLMs in the LanguageModule (see Section 5.1). For this End-to-End Evaluation, our objective is to
measure the accuracy of our entire framework (including the vision and language models) in detecting
deceptive patterns on websites.

16



6.1 Dataset
To create the dataset for the end-to-end evaluation, we crawl the websites in the deceptive pattern dataset
from Mathur et al. [47]. We use this dataset since it is the latest and most comprehensive dataset of
websites with deceptive patterns. We filter out the non-English and offline websites from this dataset,
leaving us with 555 websites out of the 1400 sites mentioned. Next, we crawled the top 1000 websites from
the Tranco [54] list9, utilizing the same methodology in Section 5.2.2 to filter out non-English and NFSW
websites, resulting in 597 websites. Additionally, for the Tranco websites, we did not scrape just the landing
pages of websites. Rather, we queried “site:domain” on DuckDuckGo and programmatically counted the
number of interactable elements for each of the top ten resulting pages. The page with the highest count
was selected for analysis. In total, we have 1152 websites in our end-to-end evaluation dataset.

Next, we manually labeled the screenshots of these websites to identify and localize the deceptive
patterns, associating each screenshot with an ElementMap. Specifically, two authors annotated the same
randomly selected 100 websites with high inter-annotator agreement (κ = 0.89) [37]. Then, each researcher
separately labeled the rest of the screenshots. We refer to this dataset as the golden Deceptive Design
Dataset (D3 dataset). We show the distribution of the samples in D3 Dataset in Table 5.

Table 5: Distribution of Samples in D3 Dataset.

Category Subtype # Samples
Non Deceptive Not Applicable 22618
Forced Action Forced Action 414

Interface Interference
Nudge 143
Fake Scarcity / Fake Urgency 211
Confirmshaming 42

Obstruction Visual Interference 48
Pre-Selection 18

Sneaking

Trick Wording 190
Hidden Costs 28
Hidden Subscription 379
Disguised Ads 306

6.2 Findings
We analyze the websites in the D3 Dataset using AutoBot and compare the predicted deceptive patterns
to the ground truth annotations.

The results from the evaluation are shown in Table 6. We observe that the performance of the AutoBot
framework is mainly dependent on the type of language model used. We note here that Gemini is the
teacher model in our framework, and Qwen and T5 are the student models, as described in Section 5.1. As
such, we see that Gemini has the best performance, followed by Qwen and T5.

We also evaluate Shi et al.’s [64] DPGuard framework. To evaluate their framework, we first create a
mapping between their taxonomy and the filtered taxonomy (see Section 11.7). For our evaluation, we only
consider the categories mappable to the filtered taxonomy. Additionally, as the DPGuard framework does
not provide localization capabilities, our evaluation is solely focused on DPGuard’s ability to identify decep-
tive patterns present within the webpage in our D3 Dataset. Our evaluation shows that DPGuard is unable
to identify deceptive patterns with high accuracy, especially struggling to classify ‘hidden-subscription’ and
‘trick-wording’. These findings are consistent with the evaluation performed by Shi et al. [64].

9https://tranco-list.eu/list/QGJ74/1000000

17

https://tranco-list.eu/list/QGJ74/1000000


Table 6: Performance of AutoBot (with three underlying language models: Gemini, Qwen, and T5) and DP-
Guard [64] on the D3 Dataset. The table has three sections, each showing performance at the category, subtype, and
binary levels.

Pattern Type Precision Recall F1‑Score
Gemini Qwen T5 DPGuard [64] Gemini Qwen T5 DPGuard [64] Gemini Qwen T5 DPGuard [64]

C
at

eg
or

y Non Deceptive 1.00 0.98 1.00 – 0.99 0.99 0.96 – 0.99 0.99 0.98 –
Forced Action 0.97 0.89 0.82 – 0.94 0.85 0.83 – 0.95 0.87 0.82 –
Interface Interference 0.89 0.76 0.55 – 0.95 0.64 0.78 – 0.92 0.69 0.64 –
Obstruction 0.70 0.57 0.13 – 0.97 0.71 0.93 – 0.81 0.63 0.23 –
Sneaking 0.87 0.79 0.52 – 0.94 0.73 0.85 – 0.90 0.76 0.64 –

Su
bt

yp
e

Not Applicable 1.00 0.98 1.00 0.78 0.99 0.99 0.91 0.74 0.99 0.99 0.95 0.76
Confirmshaming 0.93 0.75 0.59 0.05 1.00 0.69 0.85 0.32 0.97 0.72 0.70 0.09
Disguised Ads 0.74 0.62 0.34 0.49 0.95 0.61 0.81 0.62 0.83 0.61 0.48 0.55
Fake Scarcity / Fake Urgency 0.94 0.87 0.68 – 0.96 0.71 0.89 – 0.95 0.78 0.77 –
Forced Action 0.97 0.89 0.72 0.40 0.94 0.85 0.84 0.51 0.95 0.87 0.77 0.45
Hidden Costs 0.77 0.31 0.14 – 0.91 0.28 0.38 – 0.83 0.29 0.21 –
Hidden Subscription 0.93 0.84 0.51 – 0.96 0.72 0.83 – 0.95 0.78 0.63 –
Nudge 0.79 0.52 0.10 0.23 0.89 0.43 0.48 0.58 0.83 0.47 0.17 0.33
Pre-Selection 0.64 0.64 0.25 0.02 0.94 0.94 1.00 0.14 0.76 0.76 0.40 0.03
Trick Wording 0.85 0.74 0.57 0.00 0.82 0.69 0.67 0.00 0.83 0.71 0.62 0.00
Visual Interference 0.73 0.54 0.03 0.09 0.98 0.62 0.93 0.22 0.84 0.58 0.05 0.13
Deceptive 0.90 0.88 0.72 – 0.97 0.81 0.95 – 0.93 0.84 0.82 –
Not Deceptive 1.00 0.98 0.97 – 0.99 0.99 0.97 – 0.99 0.99 0.98 –

–: the DP classification is not supported by the model.

6.2.1 Error Analysis

In the end-to-end evaluation, we observe that, overall, Gemini performs extremely well in identifying decep-
tive patterns. However, for certain subtypes, it has comparatively lower performance. For instance, Gemini
has reduced performance in identifying ‘pre-selection’. Similarly, for ‘disguised-ads’, it has a slightly higher
false positive rate. Further analysis shows that these false positives are mainly due to product placement:
typically benign content resembling deceptive advertising. For instance, a website showcasing template-
based shopping apps may include screenshots of user-created apps, some of which contain promotional text.
Although harmless, this text is often misclassified as ‘disguised-ads’ due to its advertising-like appearance.
Furthermore, through empirical analysis, we have observed Gemini interchangeably using ‘nudge’ and
‘forced-action’, especially when classifying cookie notices.

For the smaller models, Qwen and T5, we observe that the AutoBot sometimes fails to identify decep-
tive pattern categories/subtypes correctly. Investigating the error cases further, we find instances where
AutoBot misclassified the category or sub-category of the deceptive pattern (while correctly identifying
that the pattern is deceptive). For example, there are instances where AutoBot incorrectly identifies
forced-action as nudge. We also find that on Wikipedia, AutoBot incorrectly tags a non-deceptive pattern
as deceptive. The classification text contains money or cost-related text, causing the model to classify the
text as trick-wording incorrectly.

6.2.2 Impact of Errors

We note that the impact of the misclassifications due to category or sub-category mismatch is minimal on
the users as the users will still be notified of a deceptive pattern. For false positives, the user gets notified
for a pattern where none exists. Upon further inspection, users can safely ignore the notification, causing
minimal distraction. For false negatives - the user impact can be severe. In such cases, users might get
into a sense of false security and get deceived by the deceptive pattern because of AutoBot’s error. We
emphasize that high recall of AutoBot ensures that such cases will be minimal.

7 Applications
We instantiate the AutoBot framework across three potential downstream tasks, each designed to serve a
stakeholder in the web ecosystem: users, developers, and regulators and researchers.

18



7.1 Browser Extension for Web Users

(a) Screenshot of a website. (b) Screenshot of AutoBot running on browser and detecting
deceptive patterns.

Figure 6: Screenshot of website (left) and AutoBot running (right).

Our first instantiation is a browser extension that directly helps web users, the primary target of decep-
tive patterns. The extension takes a screenshot of the user’s active page and analyzes it using the AutoBot
framework. The active page may contain sensitive information of the user. To mitigate data privacy con-
cerns, the extension performs the analysis locally using a distilled version of Flan-T5 Section 5.2.4. Once
processed, the extension highlights deceptive patterns to the users as shown in Figure 6. Specifically, it
shows bounding boxes around the UI elements where deceptive patterns are found, and informs the users
as they hover over elements.

Extension Architecture The browser extension utilizes a hybrid architecture consisting of lightweight
browser components with a locally running Flask server to run the AutoBot framework, similar to the
Zotero extension [22]. On the browser side, we use a popup script to allow users to activate the extension.
Once active, the extension takes a screenshot and sends it to the local Flask server for analysis. The Flask
server hosts the AutoBot framework, using Flan-T5 as the language model. After analysis, the server
returns the classifications to the extension, which are then rendered by the content script of the extension
on the user’s screen. This rendering is shown in Figure 6.

System Level Performance For the browser extension to be practical, it must perform its analysis in
real time. We, therefore, conducted latency tests on its core Flan-T5 (Language) and YOLOv10 Ensemble
(Vision) models using three different machine configurations representing various hardware capabilities
(modern high-end with GPU, older mid-range, ARM-based) and comparing CPU versus GPU performance.
Our results (detailed in Section 11.5) show that while performance on older hardware using only the CPU
takes roughly 1.5 to 3 seconds per module (e.g., 1.95 seconds for YOLOv10 Ensemble on a CPU-only
i5 laptop), newer devices with GPUs achieve near real-time performance. Specifically, on the 2023 laptop
with a GPU, T5 inference (with 800 tokens as input) took less than 0.5 seconds, and YOLOv10 Ensemble
performed its classifications in less than 0.3 seconds. Our experiments show the feasibility of implementing
AutoBot as a browser extension, as modern hardware with GPU support enables a responsive experience
without major performance delays [34, 4].

19



7.2 Lighthouse Reports for Web Developers

Figure 7: Custom Audit on a Lighthouse Report.

Research shows that while developers are often unaware of deceptive patterns on their websites and
their impacts on users, they are open to addressing these patterns if properly informed [70]. To that
end, we integrate AutoBot into Lighthouse [1, 29], a popular tool developers use to receive automated
audits on website quality. Google bundles this tool with ChromeDev Tools, and major platforms such as
Shopify, Wix, and Squarespace10 integrate it into their workflows. We created a custom Lighthouse audit
using AutoBot to fit directly into a web developer’s workflow. This audit uses an existing Lighthouse
Gatherer [27] to capture screenshots of the website, processes it using AutoBot, and finally incorporates
the findings into a Lighthouse report, as shown in Figure 7.

We package Lighthouse with our custom audit in a docker container for better usability. The docker
container maintains all functionality of Lighthouse while adding our custom audit. The container simply
takes an URL as input to run the entire audit and give the developer a report. The report provides the
developer with DeceptivePattern Score based on the number of deceptive patterns (n) found on the page
using the following scoring scheme:

S(n) =


100, if n = 0

89, if n = 1

max(100− 10n, 0), if n > 1

The scoring scheme scales inversely with the number of deceptive patterns. It assigns a score of 0.89 for
a single deceptive pattern to ensure that the audit shows a failure condition. An example of the Lighthouse
Report as a developer would see is shown in Figure 7.

7.3 Enabling Web-Scale Analysis
Our last instantiation of the AutoBot framework is a tool designed for scalable website analysis. This tool
serves researchers and regulators, providing them with the necessary automated capabilities to investigate

10https://www.shopify.com/, https://www.wix.com/, https://www.squarespace.com/

20

https://www.shopify.com/
https://www.wix.com/
https://www.squarespace.com/


the broader landscape of online deceptive practices. It takes input from a list of URLs. Then, it crawls
each URL, takes a screenshot, extracts the ElementMap from each screenshot, and passes the ElementMap
to the Language Module. We use the Gemini model with batch API in this tool to generate accurate
analysis at a low cost.

Measurement on Shopify and Tranco Websites We use this tool to analyze 11,118 websites, con-
sisting of 6,626 diverse, popular domains selected from the Tranco list [54], and 4,492 e-commerce sites
from the Shopify Partners Directory11. We detail our website selection process earlier in Section 5.2.2.

The complete distribution of the identified deceptive patterns across the two domains is in Figure 8. We
observe that sneaking is the most prevalent deceptive pattern across both domains. On Shopify websites,
the second prevalent is interface-interference. For example, e-commerce websites tend to use fake scarcity
or urgency (e.g., “Limited time offer: get 20% off for next 5 min”), which is classified as fake-scarcity-fake-
urgency. On Tranco websites, forced-action is the next most prevalent pattern after sneaking. Our analysis
also reveals that many websites employ multiple distinct categories of deceptive patterns simultaneously.
For example, bedbathandbeyond.com (Section 11.2) consists of ‘forced-action’ (by providing no clear option
to reject cookies) alongside ‘obstruction’ (by presenting mailing list terms and conditions in an excessively
small font).

8 User Studies
We conducted two exploratory user studies to evaluate the usability of two AutoBot applications: browser
extension and lighthouse report. In our first study, we evaluate the usability of a website with highlighted
deceptive patterns. Next, we reached out to Shopify developers from the Shopify developer list (see
Section 7.3), with the Lighthouse report of their website.

8.1 Website Usability
We perform an exploratory user-based evaluation to explore how highlighting deceptive patterns affects the
usability of a website. We recruited 151 U.S.-based participants from Prolific, compensating them $2 for a
task with a median completion time of 7 minutes. We did not collect demographic data and asked Prolific
to distribute the survey evenly across the demographics. The IRB at our institution determined that the
proposed activity is not research involving human subjects as defined by DHHS and FDA regulations.

8.1.1 Study Design

We conducted a within-subject study to assess the usability impact of highlighting deceptive patterns with
AutoBot. We informed the participants that the objective of the survey was to test the usability of a web
interface. Next, participants were asked to visit two custom-made websites, one with and one without
highlighting, and fill out a System Usability Scale questionnaire [14] after each. In both these websites,
the participants were asked to perform one of the four tasks: sign up, download, do shopping, or read a
news article. Once the participants visit a website and hover over the highlighted text, a banner cautioning
them about the deceptive pattern is shown. Note that the participants interacted with highlighted websites
directly without installing a browser extension.

These custom-made websites were created by the authors based on various real websites, available
at UXP2 Dark Patterns12, caught using deceptive patterns. An example of such a website is shown in
Section 11.8. After visiting each website, the participant is asked to complete a System Usability Scale

11https://www.shopify.com/partners/directory
12https://darkpatterns.uxp2.com/

21

bedbathandbeyond.com
https://www.shopify.com/partners/directory
https://darkpatterns.uxp2.com/


sneaking

forced-action

interface-interference

obstruction

01000

0
200
400
600
800

1000
1200

No
. o

f W
eb

sit
es

249

(a) Distribution of Deceptive Patterns identified by AutoBot on Tranco websites

sneaking

interface-interference

forced-action

obstruction

01000

0

200

400

600

800

No
. o

f W
eb

sit
es 299

(b) Distribution of Deceptive Patterns identified by AutoBot on Shopify Websites

Figure 8: Distribution of deceptive patterns across various domains such as (a) Most visited Tranco websites and
(b) Shopify based e-commerce websites

questionnaire [14]. Additionally, we asked the participants to fill out a post-study questionnaire consisting
of three questions:
Q1. Did you find the hints about the deceptive patterns useful?
Q2. Did you feel that the highlighted box encouraged you to notice the deceptive patterns?
Q3. Did you feel that the highlighted box encouraged you to change your choice?

8.1.2 Findings

We evaluated the website’s usability with and without highlights using the SUS metric, , as shown in
Figure 13. In this case, we consider the non-hypothesis to be that the website’s usability is unaffected after
highlighting. Based on the Wilcoxon signed-rank statistical test, the p-value for comparing two groups is
0.106, indicating no statistically significant difference between the SUS scores for websites. Therefore, the
null hypothesis stands that usability is unaffected. We do note, however, that the mean SUS score for the
highlighted website was 2 points higher.

22



Furthermore, based on participant feedback to the three questions mentioned above (Figure 14), we
find that most found the highlight box (65.5%) and its corresponding hint (56.3%) helpful for recognizing
deceptive patterns. Additionally, 38% of the participants reported they would change their behavior after
being shown the highlighted patterns.

8.1.3 Future Studies

Reflecting on our preliminary user study results suggests that the design of highlighting deceptive patterns
on webpages does not affect website usability, and can help users recognize deceptive patterns. Follow-
up studies should investigate the usability and utility of real-time interventions that detect and present
deceptive patterns on the web. For example, such studies can evaluate different realizations of AutoBot’s
extension that involve different trade-offs between real-time performance, usability, and utility. In such
studies, participants can be prompted to install the extension, visit real-world websites, and answer surveys
based on their experience.

8.2 Developer Outreach
To evaluate the effectiveness of the Lighthouse reports, we notified the Shopify web developers of the 4,492
website we analyzed in Section 7.3 about various deceptive patterns present on their websites.

8.2.1 Outreach Design

We crawled the Shopify Partners Directory in search of developers and their most popular Shopify-based
website. Next, we analyzed these websites for deceptive patterns as detailed earlier in Section 7.3. Through
that process we created Lighthouse reports for each of the website. Next, we reached out to the web devel-
opers of the website through email, inquiring about their opinion of the Lighthouse report. Particularly,
we asked them 4 questions:
Q1. Was this report is useful to you?
Q2. Would you like more or less information included in the report, and if so, what?
Q3. In light of this report, would you be willing to make any changes?
Q4. Would you like to get access to this tool to run on your complete website?

8.2.2 Ethical Consideration

In our email to the developers, we clearly identified ourselves as developers and stated our purpose of
creating a system to automatically create Lighthouse reports that identify deceptive patterns on the web,
and that we wanted to understand their perspective on these reports. We also stated that no personally
identifiable data was being collected and that their responses to our email were optional. Since, no PII
data was collected for our study, the IRB at our institution certified our study as ”not human subject
research,” and we were not required to obtain consent before sending out the emails.

8.2.3 Findings

Unfortunately, the study yielded only three usable replies. Two responses indicated that removing DPs
was an owner-level decision for which they lacked authority, while the third cited the desire to maintain
customer retention as the reason for not making changes.

8.2.4 Future Studies

The limited response rate suggests that a different approach is needed to interact with developers. While
prior work had success with email-based notifications for web developers [70], those emails included lan-
guage about vulnerabilities and legal liabilities. We opted not to use such language with the developers,

23



which contributed to a reduced response rate. We suggest that future studies actively recruit developers
and interview them about the Lighthouse reports. Another follow-up study can potentially help regulators
generate variants of Lighthouse reports that check compliance with relevant laws, such as the French Data
Protection Act.

9 Limitations
Scope of Detectable Patterns A limitation for AutoBot comes from the static UI analysis. Our
approach inherently restricts the scope of detectable deceptive patterns to those visually present on a
single page at a given time. Deceptive patterns such as nagging cannot be detected through this approach,
and thus, we filter Gary et. al.’s taxonomy [31] to focus on static deceptive patterns.

Hardware Constraints Another practical limitation arises due to hardware limitations associated with
deploying AutoBot’s extension using T5. The model requires approximately 1GB of memory, which might
not be easily available on older devices. Furthermore, our experiments show that while near-real-time
latency is achievable on modern hardware, the lack of GPU acceleration can significantly affect latency.

Multilingual Support AutoBot’s focus on English websites presents another limitation as the language
module does not support non-English languages due to presence of language-specific datasets in the dis-
tillation pipeline. However, we note that it is possible to extend AutoBot to other languages by using a
multi-lingual language models, and curating a language specific distillation dataset.

YOLOv10 Ensemble Label Set Finally, the YOLOv10 Ensemble is limited to identifying only a set
of 7 common UI elements. Other interactive elements prevalent on modern websites, such as sliders and
date pickers, are not explicitly recognized by the model. While this could potentially reduce the contextual
information available to the Language Module, we have empirically observed that deceptive patterns rarely
use other interactive UI elements.

10 Future Work
AutoBot is a framework that takes a screenshot and returns localized deceptive patterns. We provide three
sample applications that build on top of it. We envision that applications like lighthouse-ci [28] can
easily extend our work to integrate AutoBot into developer CI/CD workflows. Regulators can also use
AutoBot with models aligned to their regulations to enforce policies automatically.

Another direction for future work is to enhance AutoBot’s multilingual capabilities. While deceptive
patterns are language-agnostic, the current framework’s training and evaluation datasets were focused on
English-language websites. Future efforts could explore language-specific versions of the LanguageModule
or integrate advanced LLMs that can reason across multiple languages.

Lastly, we also envision using AutoBot as a tool to generate large-scale datasets of websites with
elements automatically labeled for deceptive patterns. A significant bottleneck for finetuning/retraining
a VLLM for this task is the lack of large-scale annotated training data. Datasets created using AutoBot
can be utilized to overcome this challenge and potentially improve the performance of VLLMs in detecting
deceptive patterns in the future.

11 Conclusion
In this paper, we introduce AutoBot, a framework to automatically detect deceptive patterns on websites.
AutoBot employs a modular approach: first, it captures a screenshot of the website and processes it using
the Vision Module to provide a textual representation of the website (ElementMap). It then analyzes the

24



ElementMap using a Language Module to identify deceptive patterns and their type. We evaluate AutoBot
on a dataset of real-world websites to demonstrate its accuracy in identifying and localizing deceptive
patterns. We then instantiate AutoBot in three settings: a user-facing browser extension, a developer-
facing Lighthouse report, and a researcher/regulator-facing website analysis tool.

References
[1] Lighthouse - Chrome Web Store.
[2] Regulation (EU) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection

of natural persons with regard to the processing of personal data and on the free movement of such data,
and repealing directive 95/46/ec (general data protection regulation). https://eur-lex.europa.eu/eli/reg/
2016/679/oj, 2016. Accessed: 2024-09-02.

[3] The 2023 State of API Security Report - Global Findings, Apr. 2023.
[4] WebGPU, Feb. 2024. Defines a modern graphics and compute API for the Web.
[5] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,

S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
[6] J. H. Adorna, A. J. Dantis, R. Feria, L. L. Figueroa, and R. Solamo. Developing a browser extension for the

automated detection of deceptive patterns in cookie banners. In Proceedings of the Workshop on Computation:
Theory and Practice (WCTP 2023), volume 20, page 101. Springer Nature, 2024.

[7] V. Agarwal, N. Thureja, M. Krishan Garg, S. Dharmavaram, D. Kumar, et al. ” which llm should i use?”:
Evaluating llms for tasks performed by undergraduate computer science students in india. arXiv e-prints, pages
arXiv–2402, 2024.

[8] S. aka Steve Spiker. Tweet by spike aka steve spiker on x. https://x.com/spjika/status/
1686492710910427137, 2023. Accessed: 2024-09-02.

[9] Anthropic. Fine-tune claude 3 haiku in amazon bedrock. https://www.anthropic.com/news/
fine-tune-claude-3-haiku, July 2024. Accessed: April 15, 2025.

[10] V. Bannihatti Kumar, R. Iyengar, N. Nisal, Y. Feng, H. Habib, P. Story, S. Cherivirala, M. Hagan, L. Cranor,
S. Wilson, F. Schaub, and N. Sadeh. Finding a Choice in a Haystack: Automatic Extraction of Opt-Out
Statements from Privacy Policy Text. In Proceedings of The Web Conference 2020, pages 1943–1954, Taipei
Taiwan, Apr. 2020. ACM.

[11] C. Bösch, B. Erb, F. Kargl, H. Kopp, and S. Pfattheicher. Tales from the dark side: Privacy dark strategies
and privacy dark patterns. Proceedings on Privacy Enhancing Technologies, 2016.

[12] H. Brignull. Deceptive patterns. https://www.deceptive.design/.
[13] H. Brignull, M. Leiser, C. Santos, and K. Doshi. Deceptive patterns – user interfaces designed to trick you, 4

2023.
[14] J. Brooke. Sus: A quick and dirty usability scale. Usability Evaluation in INdustry/Taylor and Francis, 1996.
[15] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,

A. Askell, et al. Language models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

[16] T. Cairns. extcolors: Extract colors from an image using k-means clustering. https://pypi.org/project/
extcolors/, 2021. Accessed: 2024-09-02.

[17] California Privacy Protection Agency. California Privacy Rights Act (CPRA). https://thecpra.org/, 2024.
Accessed: 2024-09-04.

[18] J. Chen, J. Sun, S. Feng, Z. Xing, Q. Lu, X. Xu, and C. Chen. Unveiling the tricks: Automated detection of
dark patterns in mobile applications. In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology, pages 1–20, 2023.

[19] K. Chen, Z. Zhang, W. Zeng, R. Zhang, F. Zhu, and R. Zhao. Shikra: Unleashing multimodal llm’s referential
dialogue magic. arXiv preprint arXiv:2306.15195, 2023.

25

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://x.com/spjika/status/1686492710910427137
https://x.com/spjika/status/1686492710910427137
https://www.anthropic.com/news/fine-tune-claude-3-haiku
https://www.anthropic.com/news/fine-tune-claude-3-haiku
https://www.deceptive.design/
https://pypi.org/project/extcolors/
https://pypi.org/project/extcolors/
https://thecpra.org/


[20] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma, et al.
Scaling instruction-finetuned language models. Journal of Machine Learning Research, 25(70):1–53, 2024.

[21] G. Conti and E. Sobiesk. Malicious interface design: exploiting the user. In Proceedings of the 19th international
conference on World wide web, pages 271–280, 2010.

[22] Corporation for Digital Scholarship. Zotero. https://www.zotero.org/.

[23] H. Cui, Z. Shamsi, G. Cheon, X. Ma, S. Li, M. Tikhanovskaya, P. Norgaard, N. Mudur, M. Plomecka, P. Rac-
cuglia, et al. Curie: Evaluating llms on multitask scientific long context understanding and reasoning. arXiv
preprint arXiv:2503.13517, 2025.

[24] A. Curley, D. O’Sullivan, D. Gordon, B. Tierney, and I. Stavrakakis. The design of a framework for the detection
of web-based dark patterns. 2021.

[25] M. Deitke, C. Clark, S. Lee, R. Tripathi, Y. Yang, J. S. Park, M. Salehi, N. Muennighoff, K. Lo, L. Soldaini,
et al. Molmo and pixmo: Open weights and open data for state-of-the-art multimodal models. arXiv preprint
arXiv:2409.17146, 2024.

[26] E. A. Elsoud, M. Hassan, O. Alidmat, E. Al Henawi, N. Alshdaifat, M. Igtait, A. Ghaben, A. Katrawi, and
M. Dmour. Under sampling techniques for handling unbalanced data with various imbalance rates: A compar-
ative study. International Journal of Advanced Computer Science & Applications, 15(8), 2024.

[27] Google. full-page-screenshot.js. https://github.com/GoogleChrome/lighthouse/blob/main/core/gather/
gatherers/full-page-screenshot.js.

[28] Google. Lighthouse-ci. https://github.com/GoogleChrome/lighthouse-ci.

[29] Google Chrome Developers. Lighthouse Overview.

[30] C. M. Gray, Y. Kou, B. Battles, J. Hoggatt, and A. L. Toombs. The dark (patterns) side of ux design. In
Proceedings of the 2018 CHI conference on human factors in computing systems, pages 1–14, 2018.

[31] C. M. Gray, C. Santos, and N. Bielova. Towards a preliminary ontology of dark patterns knowledge. In Extended
abstracts of the 2023 CHI conference on human factors in computing systems, pages 1–9, 2023.

[32] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, et al. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[33] C.-Y. Hsieh, C.-L. Li, C.-K. Yeh, H. Nakhost, Y. Fujii, A. Ratner, R. Krishna, C.-Y. Lee, and T. Pfister.
Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes.
arXiv preprint arXiv:2305.02301, 2023.

[34] Hugging Face. Running models on WebGPU. https://huggingface.co/docs/transformers.js/en/guides/
webgpu, 2024. Accessed: 2025-04-13.

[35] R. Khandelwal, T. Linden, H. Harkous, and K. Fawaz. {PriSEC}: A Privacy Settings Enforcement Controller.
pages 465–482, 2021.

[36] R. Khandelwal, A. Nayak, H. Harkous, and K. Fawaz. Automated Cookie Notice Analysis and Enforcement.

[37] J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical data. biometrics, pages
159–174, 1977.

[38] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya. A survey on addressing high-class imbalance in
big data. Journal of Big Data, 5(1):1–30, 2018.

[39] M. Leiser and C. Santos. Dark patterns, enforcement, and the emerging digital design acquis: Manipulation
beneath the interface. 2023.

[40] C. Lewis. Gameful Patterns. In C. Lewis, editor, Irresistible Apps: Motivational Design Patterns for Apps,
Games, and Web-based Communities, pages 33–50. Apress, Berkeley, CA, 2014.

[41] M. Li, R. Zhang, J. Chen, J. Gu, Y. Zhou, F. Dernoncourt, W. Zhu, T. Zhou, and T. Sun. Towards visual text
grounding of multimodal large language model. arXiv preprint arXiv:2504.04974, 2025.

[42] Z. Li, K. You, H. Zhang, D. Feng, H. Agrawal, X. Li, M. P. S. Moorthy, J. Nichols, Y. Yang, and Z. Gan. Ferret-ui
2: Mastering universal user interface understanding across platforms. arXiv preprint arXiv:2410.18967, 2024.

26

https://www.zotero.org/
https://github.com/GoogleChrome/lighthouse/blob/main/core/gather/gatherers/full-page-screenshot.js
https://github.com/GoogleChrome/lighthouse/blob/main/core/gather/gatherers/full-page-screenshot.js
https://github.com/GoogleChrome/lighthouse-ci
https://huggingface.co/docs/transformers.js/en/guides/webgpu
https://huggingface.co/docs/transformers.js/en/guides/webgpu


[43] T. F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar. Learning design semantics for mobile apps. In
The 31st Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 569–579, New
York, NY, USA, 2018.

[44] Y. Lu, J. Yang, Y. Shen, and A. Awadallah. Omniparser for pure vision based gui agent. arXiv preprint
arXiv:2408.00203, 2024.

[45] M. Luo, S. Tan, J. Wong, X. Shi, W. Y. Tang, M. Roongta, C. Cai, J. Luo,
T. Zhang, L. E. Li, R. A. Popa, and I. Stoica. Deepscaler: Surpassing o1-
preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025. Notion Blog.

[46] S. H. Mansur, S. Salma, D. Awofisayo, and K. Moran. Aidui: Toward automated recognition of dark patterns
in user interfaces. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pages
1958–1970. IEEE, 2023.

[47] A. Mathur, G. Acar, M. J. Friedman, E. Lucherini, J. Mayer, M. Chetty, and A. Narayanan. Dark patterns at
scale: Findings from a crawl of 11k shopping websites. Proceedings of the ACM on human-computer interaction,
3(CSCW):1–32, 2019.

[48] V. Mohankumar and S. Anbalagan. A benchmark dataset and ensemble YOLO method for enhanced underwater
fish detection. ETRI Journal, n/a(n/a). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2024-
0383.

[49] A. Nayak, R. Khandelwal, E. Fernandes, and K. Fawaz. Experimental security analysis of sensitive data access
by browser extensions. In Proceedings of the ACM on Web Conference 2024, pages 1283–1294, 2024.

[50] notAI tech. Nudenet: Nudity detection with deep neural networks. https://github.com/notAI-tech/NudeNet,
2019. Accessed March 19, 2025.

[51] OpenAI. Learning to reason with LLMs. https://openai.com/index/learning-to-reason-with-llms/.
[52] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,

et al. Training language models to follow instructions with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

[53] V. Pham, L. D. T. Ngoc, and D.-L. Bui. Optimizing YOLO Architectures for Optimal Road Damage Detection
and Classification: A Comparative Study from YOLOv7 to YOLOv10, Oct. 2024. arXiv:2410.08409 [cs].

[54] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen. Tranco: A research-
oriented top sites ranking hardened against manipulation. arXiv preprint arXiv:1806.01156, 2018.

[55] S. H. Raju, S. F. Waris, S. Adinarayna, V. C. Jadala, and G. S. Rao. Smart dark pattern detection: Making
aware of misleading patterns through the intended app. In Sentimental Analysis and Deep Learning: Proceedings
of ICSADL 2021, pages 933–947. Springer, 2022.

[56] J. Redmon. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018.
[57] S. Ren. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv preprint

arXiv:1506.01497, 2015.
[58] M. Renze. The effect of sampling temperature on problem solving in large language models. In Findings of the

Association for Computational Linguistics: EMNLP 2024, pages 7346–7356, 2024.
[59] Y. Sazid, M. M. N. Fuad, and K. Sakib. Automated detection of dark patterns using in-context learning

capabilities of gpt-3. In 2023 30th Asia-Pacific Software Engineering Conference (APSEC), pages 569–573.
IEEE, 2023.

[60] R. Schäfer, P. M. Preuschoff, R. Niewianda, S. Hahn, K. Fiedler, and J. Borchers. Don’t detect, just correct:
Can llms defuse deceptive patterns directly? In Proceedings of the Extended Abstracts of the CHI Conference
on Human Factors in Computing Systems, pages 1–11, 2025.

[61] Schneider Wallace. Dark patterns: Making online subscriptions harder to cancel draws law-
suits, settlements, and government scrutiny. https://www.schneiderwallace.com/media/
dark-patterns-making-online-subscriptions-harder-to-cancel-draws-lawsuits-settlements-and-government-scrutiny/,
2023.

27

https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://github.com/notAI-tech/NudeNet
https://openai.com/index/learning-to-reason-with-llms/
https://www.schneiderwallace.com/media/dark-patterns-making-online-subscriptions-harder-to-cancel-draws-lawsuits-settlements-and-government-scrutiny/
https://www.schneiderwallace.com/media/dark-patterns-making-online-subscriptions-harder-to-cancel-draws-lawsuits-settlements-and-government-scrutiny/


[62] V. P. Sermuga Pandian, S. Suleri, and P. D. M. Jarke. Uisketch: a large-scale dataset of ui element sketches. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–14, 2021.

[63] shadcn. Build your component library - shadcn/ui.

[64] Z. Shi, R. Sun, J. Chen, J. Sun, M. Xue, Y. Gao, F. Liu, and X. Yuan. 50 shades of deceptive patterns: A
unified taxonomy, multimodal detection, and security implications. In Proceedings of the ACM Web Conference
2025 (WWW’25), 2025.

[65] F. Shiri, X.-Y. Guo, M. G. Far, X. Yu, G. Haffari, and Y.-F. Li. An empirical analysis on spatial reasoning
capabilities of large multimodal models. arXiv preprint arXiv:2411.06048, 2024.

[66] S. Shool, S. Adimi, R. Saboori Amleshi, E. Bitaraf, R. Golpira, and M. Tara. A systematic review of large
language model (llm) evaluations in clinical medicine. BMC Medical Informatics and Decision Making, 25(1):117,
2025.

[67] N. Shuyo and others (ported to Python). langdetect: Language detection library ported to python. https:
//pypi.org/project/langdetect/, 2021. Version [Specify version if needed, e.g., 1.0.9].

[68] T. H. Soe, O. E. Nordberg, F. Guribye, and M. Slavkovik. Circumvention by design-dark patterns in cookie
consent for online news outlets. In Proceedings of the 11th nordic conference on human-computer interaction:
Shaping experiences, shaping society, pages 1–12, 2020.

[69] L. Stein. Tweet by luke stein on x. https://x.com/lukestein/status/1150014732486742016, 2019. Accessed:
2024-09-02.

[70] A. Stöver, N. Gerber, H. Pridöhl, M. Maass, S. Bretthauer, I. Spiecker Gen. Döhmann, M. Hollick, and D. Her-
rmann. How Website Owners Face Privacy Issues: Thematic Analysis of Responses from a Covert Notifica-
tion Study Reveals Diverse Circumstances and Challenges. Proceedings on Privacy Enhancing Technologies,
2023(2):251–264, Apr. 2023.

[71] J. Tan, Z. Dou, W. Wang, M. Wang, W. Chen, and J.-R. Wen. Htmlrag: Html is better than plain text
for modeling retrieved knowledge in rag systems. In Proceedings of the ACM on Web Conference 2025, pages
1733–1746, 2025.

[72] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, K. Millican,
et al. Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[73] M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Liubimov. Label Studio: Data labeling software, 2020-2025.
Open source software available from https://github.com/HumanSignal/label-studio.

[74] R. Walambe, A. Marathe, K. Kotecha, and G. Ghinea. Lightweight Object Detection Ensemble Framework
for Autonomous Vehicles in Challenging Weather Conditions. Computational Intelligence and Neuroscience,
2021:5278820, Oct. 2021.

[75] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and G. Ding. Yolov10: Real-time end-to-end object
detection. arXiv preprint arXiv:2405.14458, 2024.

[76] D. Wang, J. Anthony Ribando, D. Mo, and N. Tung. insite. a chrome extension that protects consumers from
marketing tricks when they shop online., 2019.

[77] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing systems,
35:24824–24837, 2022.

[78] J. Wu, R. Krosnick, E. Schoop, A. Swearngin, J. P. Bigham, and J. Nichols. Never-ending Learning of User
Interfaces, Aug. 2023. arXiv:2308.08726 [cs].

[79] J. Wu, S. Wang, S. Shen, Y.-H. Peng, J. Nichols, and J. Bigham. Webui: A dataset for enhancing visual ui
understanding with web semantics. ACM Conference on Human Factors in Computing Systems (CHI), 2023.

[80] M. Xie, S. Feng, Z. Xing, J. Chen, and C. Chen. Uied: a hybrid tool for gui element detection. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 1655–1659, 2020.

28

https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/
https://x.com/lukestein/status/1150014732486742016


[81] M. Xie, S. Feng, Z. Xing, J. Chen, and C. Chen. Uied: a hybrid tool for gui element detection. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, ESEC/FSE 2020, page 1655–1659, New York, NY, USA, 2020. Association for
Computing Machinery.

[82] H. You, H. Zhang, Z. Gan, X. Du, B. Zhang, Z. Wang, L. Cao, S.-F. Chang, and Y. Yang. Ferret: Refer and
ground anything anywhere at any granularity. arXiv preprint arXiv:2310.07704, 2023.

[83] Y. Zang, W. Li, J. Han, K. Zhou, and C. C. Loy. Contextual object detection with multimodal large language
models. International Journal of Computer Vision, 133(2):825–843, 2025.

[84] X. Zhang, L. De Greef, A. Swearngin, S. White, K. Murray, L. Yu, Q. Shan, J. Nichols, J. Wu, C. Fleizach,
et al. Screen recognition: Creating accessibility metadata for mobile applications from pixels. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–15, 2021.

[85] Y. Zhang, A. Unell, X. Wang, D. Ghosh, Y. Su, L. Schmidt, and S. Yeung-Levy. Why are visually-grounded
language models bad at image classification? arXiv preprint arXiv:2405.18415, 2024.

[86] J. Zhou, T. Lu, S. Mishra, S. Brahma, S. Basu, Y. Luan, D. Zhou, and L. Hou. Instruction-following evaluation
for large language models. arXiv preprint arXiv:2311.07911, 2023.

29



Appendix

11.1 Full Taxonomy

Table 7: Filtered taxonomy of Deceptive Patterns. The table shows the Category, the Sub-Type, the description of
the deceptive pattern, and an example.

Category Sub-Type Description Examples

Interface
Interference

Confirmshaming Guilt-tripping users into making a
specific choice “No, I prefer to pay more”

Fake-Scarcity/
Fake-Urgency

Create a false sense of urgency/scarcity
to pressure users into making a choice “Only 3 left in stock”

Nudge Nudge a user towards a specific choice. “Accept All” in bright colors, while
“Reject” is hard to notice

Forced-
Action Forced-Action Design tactic forcing users to complete

a specific task to proceed. Pop-up ads

Obstruction

Pre-Selection Choices given to users are already
selected.

The checkbox of “Sign up for news and
updates” is checked by default.

Visual
Interference

Misleading design elements that
distract or mislead users from
important information.

The term of use for service users are
signing up for is in tiny font and
cannot be clearly seen on sites.

Jargon
The use of non-user-friendly language
to prevent users from understanding
important information.

“By affirming this selection, you
consent to the perpetuation of
automatic pecuniary transactions at
designated intervals.”

Sneaking

Hidden
Subscription

Users are not clearly informed that
they are signing up for a service.

“By signing up for this email, you are
agreeing to news and information from
us”

Hidden Costs Users are not clearly informed about
all the costs associated with a service.

During checkout, unexpected fees such
as “handling charges”appear.

Disguised Ads Visually misleading ads embedded into
page content.

Prominent “Download” button at the
top of a page that redirects the user to
unrelated adware.

Trickwording
The use of non-user-friendly language
to trick users into making certain
choices

“Newsletter subscription by default,
tick here to unsubscribe”

Non-
Deceptive

Common, user-friendly design element
that does not show any deceptive
pattern.

Any text or web element that does not
exhibit any deceptive behavior.

11.2 Website with Multiple Deceptive Pattern

30



Figure 9: The screenshot of Bed, Bath, and Beyond, is identified as having four deceptive pattern categories on its
web page.

31



11.3 Mapping to Gary et al.’s Taxonomy

Table 8: Mapping taxonomy of Deceptive Patterns to Gray et al. [31]

Category Sub-Type Mapping

Interface Interference
Confirmshaming Social Engineering; Personalization
Fake-Scarcity / Fake-Urgency Social Engineering; Urgency
Nudge Interface Interference; Manipulating Visual Choice Architectures

Forced Action Forced-Action Forced Action

Obstruction
Pre-Selection Interface Interference; Bad Default
Visual Interference Obstruction; Creating Barriers
Jargon Obstruction; Creating Barriers

Sneaking

Hidden Subscription Sneaking; Hiding Information
Hidden Costs Sneaking; Hiding Information
Disguised Ads Sneaking; Bait and Switch
Trick Wording Sneaking; (De)contextualizing Cues

11.4 Website Generation Prompts
To generate websites using v0 we used prompts from GPT4. Some example prompts are shown below:

1. Create a virtual learning platform with courses, webinars, and interactive tools for students of all ages.

2. Create an online gourmet food shop featuring high-quality ingredients, kitchen tools, and gourmet recipes.

3. Design a warm and inviting UI for a pet care blog that radiates friendliness and approachability. The primary
color palette should include soft, earthy tones with playful accents. Use a clean, easy-to-read sans serif font
and incorporate elements like paw prints or pet silhouettes to enhance the thematic appeal. The homepage
must prominently feature an engaging welcome message, and sections for various pets like dogs, cats, birds,
and more, encouraging user navigation. Include a dynamic sidebar with widgets for pet care tips, a search
bar, and featured posts. Dropdown menus should be intuitive, providing categories such as nutrition, training,
health, and grooming. Visuals are key: integrate heart-warming pet images and infographics to explain care
practices. End with footer links to contact details, social media, and a cute, animated pet mascot offering
useful tips periodically.

11.5 Latency on Machines

32



300 400 500 600 700
0

0.5
1

1.5
2

2.5
3

3.5 Device
Laptop 13th Gen i9 (2023)
Laptop RTX 4080 (2023)
Laptop 8th Gen i5 (2018)
Macbook M1 Pro (2022)

Input Size

Ti
m

e 
(s

)

(a) T5’s latency when running on the three machines.

0.03

0.47

1.95

1.29

Laptop
13th Gen i9

(2023)

Laptop
8th Gen i5

(2018)

Macbook
M1 Pro
(2022)

0
0.5

1
1.5

2
2.5

3
3.5

Device Type
GPU
CPU
MPS

Devices

GPU

(b) YOLO’s latency when running on the three machines

Figure 10: T5 and YOLOv10 model inference time running on the 3 machines

11.6 Mapping Multi-Token Labels to Single-Token Labels

Table 9: Mapping between multi-token and single-token representations of dark patterns and user interface concepts

Label Multi Tokens → Single Token Label
interface-interference [3459, 18, 3870, 11788, 1] → [18805, 1] distraction
forced-action [5241, 18, 4787, 1] → [10472, 1] obligation
obstruction [26359, 1] → [12515, 1] barrier
sneaking [14801, 53, 1] → [14801, 1] sneak
non-deceptive [529, 18, 221, 6873, 757, 1] → [26213, 1] irrelevant
confirmshaming [3606, 7, 1483, 53, 1] → [12447, 1] shame
fake-scarcity-fake-urgency [9901, 18, 7, 1720, 6726..., 1] → [9554, 1] manufactured
nudge [3, 29, 13164, 1] → [3292, 1] push
hard-to-cancel [614, 18, 235, 18, 1608, 7125, 1] → [19885, 1] sticky
pre-selection [554, 18, 7, 15, 12252, 1] → [356, 1] set
visual-interference [3176, 18, 3870, 11788, 1] → [21634, 1] obscure
jargon [3, 5670, 5307, 1] → [11100, 1] mystery
hidden-subscription [5697, 18, 7304, 11830, 1] → [23808, 1] conceal
hidden-costs [5697, 18, 11290, 7, 1] → [594, 1] price
disguised-ads [31993, 26, 18, 9, 26, 7, 1] → [6543, 1] ads
trick-wording [7873, 18, 6051, 53, 1] → [21050, 1] uncertain
not-applicable [59, 18, 27515, 75, 179, 1] → [26213, 1] irrelevant

33



11.7 Taxonomy Mapping from DPGuard to AutoBot

Table 10: Mapping taxonomy of DPGuard. The table shows deceptive patterns from DPGuard and the deceptive
pattern Category/Sub-Type of AutoBot.

Deceptive Pattern Category Sub-Type
no dp Non Deceptive Not Applicable
nagging – –
roach motel – –
price comparison prevention Sneaking Hidden Subscription
intermediate currency Forced Action Forced Action
forced continuity Sneaking Hidden Subscription
hidden costs Sneaking Hidden Costs
sneak into basket Sneaking Hidden Subscription
hidden information Obstruction Visual Interference
preselection Obstruction Pre-Selection
toying with emotion Interface Interference Confirmshaming
false hierarchy Interface Interference Nudge
disguised ads Sneaking Disguised Ads
tricked questions Sneaking Trick Wording
small close button – –
social pyramid Forced Action Forced Action
privacy zuckering Forced Action Forced Action
gamification Forced Action Forced Action
countdown on ads Forced Action Forced Action
watch ads to unlock features or rewards Forced Action Forced Action
pay to avoid ads Forced Action Forced Action
forced enrollment Forced Action Forced Action

34



11.8 User Study Mock Website Samples

Figure 11: A website showing a book store’s homepage with a cookie notice, nudging users to accept cookies.

35



Figure 12: A news organization’s website asking users to donate. The deceptive patterns are highlighted in this
example with a red box around them.

11.9 User Study Findings

Unhighlighted Highlighted

20

40

60

80

100

Sy
st

em
 U

sa
bi

lit
y 

Sc
or

e

p value =0.106

Figure 13: The results from the usability study show how highlighting affected the website’s user experience. We
find that usability is not affected by the highlights (p = 0.106).

36



Yes
56.3%

No
25.8%

Maybe
17.9%

Yes
65.5%

Maybe
17.6%

No
16.9%

Yes
38%

Maybe
21.3%

No
40.7%

Figure 14: The distribution of participant responses to qualitative Q1-3 asked after the user study.

37


	Introduction
	Background and Related Works
	Taxonomy for Deceptive Patterns
	Filtered Taxonomy

	Detecting Deceptive Patterns
	Human-based Manual Annotations
	Probabilistic Text & Image Models
	Heuristic Based Methods
	Classical ML Models
	Large Language Models (VLLMs)


	System Overview
	Vision Module
	Text Extraction
	Web-UI Element Detection
	Dataset Curation
	Training Web-UI Element Detector

	ElementMap Generation
	Vision Module Evaluation
	Vision Dataset
	Vision Module Evaluation


	Language Module
	Possible Solutions
	Large Language Models (LLMs):
	Small Language Models (SLMs):
	Very Small Language Models (vSLMs):

	Our Solution
	Prompting the LLM
	Creating Distillation Dataset
	Distilling Small Language Models (Qwen2.5-1.5B)
	Distilling Very Small Language Models (T5):

	Language Module Evaluation
	Language Dataset
	Evaluating Language Models


	End-to-End Evaluation
	Dataset
	Findings
	Error Analysis
	Impact of Errors


	Applications
	Browser Extension for Web Users
	Lighthouse Reports for Web Developers
	Enabling Web-Scale Analysis

	User Studies
	Website Usability
	Study Design
	Findings
	Future Studies

	Developer Outreach
	Outreach Design
	Ethical Consideration
	Findings
	Future Studies


	Limitations
	Future Work
	Conclusion
	Full Taxonomy
	Website with Multiple Deceptive Pattern
	Mapping to Gary et al.'s Taxonomy
	Website Generation Prompts
	Latency on Machines
	Mapping Multi-Token Labels to Single-Token Labels
	Taxonomy Mapping from DPGuard to AutoBot
	User Study Mock Website Samples
	User Study Findings


