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Abstract
Deceptive patterns in digital interfaces manipulate users into mak-
ing unintended decisions, exploiting cognitive biases and psycho-
logical vulnerabilities. These patterns have become ubiquitous on
various digital platforms. While efforts to mitigate deceptive pat-
terns have emerged from legal and technical perspectives, a signif-
icant gap remains in creating usable and scalable solutions. We
introduce our AutoBot framework to address this gap and help
web stakeholders navigate and mitigate online deceptive patterns.
AutoBot accurately identifies and localizes deceptive patterns from
a screenshot of a website without relying on the underlying HTML
code. AutoBot employs a two-stage pipeline that leverages the ca-
pabilities of specialized vision models to analyze website screen-
shots, identify interactive elements, and extract textual features.
Next, using a large language model, AutoBot understands the con-
text surrounding these elements to determine the presence of de-
ceptive patterns. We also use AutoBot, to create a synthetic dataset
to distill knowledge from ‘teacher’ LLMs to smaller language mod-
els. Through extensive evaluation, we demonstrate AutoBot’s ef-
fectiveness in detecting deceptive patterns on the web, achieving
an F1-score of 0.93 in this task, underscoring its potential as an
essential tool for mitigating online deceptive patterns.

We implement AutoBot, across three downstream applications
targeting different web stakeholders: (1) a local browser extension
providing users with real-time feedback, (2) a Lighthouse audit to
inform developers of potential deceptive patterns on their sites,
and (3) as a measurement tool for researchers and regulators.

CCS Concepts
•Human-centered computing→Web-based interaction;Hu-
man computer interaction (HCI); • Computing methodolo-
gies → Machine learning; Artificial intelligence; • Security
and privacy→ Usability in security and privacy; Social aspects of
security and privacy.
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1 Introduction
Deceptive patterns, also known as ‘Dark Patterns,’ are design choices
that manipulate users into making unintended decisions as they
interact with applications. These patterns exploit cognitive biases
and psychological vulnerabilities to influence user behavior, often
in ways that benefit the service provider at the user’s expense [10,
11]. The growing use of deceptive patterns negatively impacts the
quality of user experiences across various online activities, such
as online purchases, engaging with social media, playing video
games, or simply browsing the web [43]. The widespread nature
of these patterns is well documented, with notable examples from
resources like Harry Brignull’s deceptive.design1 and Caroline
Sliders’ analysis at The Pudding2.

Despite the recent push toward better web experience, fueled by
user awareness, media revelations, and privacy regulations [1, 15],
deceptive patterns continue to pose substantial challenges [35]. As
a result, users are at risk of harm, such as financial loss [58], privacy
violations [6], and the exploitation of vulnerable populations, in-
cluding children [65]. In response, researchers have explored differ-
ent approaches to detect and classify deceptive patterns on theweb.
Earlier efforts included manual analysis to analyze the distribution
of deceptive patterns on the Internet [10, 26, 43]. Such approaches
are infeasible at scale due to the sheer volume, dynamic nature,
and diversity of website interfaces. More recent efforts include
heuristic- and ML-based methods [4, 10, 16, 26, 42, 43, 52, 64, 72].
However, these approaches often exhibit limited accuracy when
identifying deceptive patterns in the wild, as we show later.

Recognizing the limitations of current approaches, there is a
pressing need for automated tools to assist web stakeholders in

1https://www.deceptive.design/
2https://pudding.cool/2023/05/dark-patterns/
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Analyzing the provided image [...] the 
following DP can be identified:

Label: nudge
Reasoning:
The interface distinctly prioritizes the 
"Accept all cookies" [...] using a brighter, 
more prominent color (pink) 
compared to [the] "Reject all" button 
[which] is less prominent, next to the 
brightly colored [accept] option [...] due 
to its less saturated [...] background.

User Input

You are given a screenshot of a website 
and a taxonomy to detect deceptive 
designs. Your task is to follow the 
taxonomy and generate labels for each 
possible dark pattern present in the 
image and give a reasoning behind that 
choice.

Taxonomy:{...}

Based on the provided image and 
taxonomy, [...] DP identified:

Interface Interference - Nudge:

Reasoning: The [...] "Accept all cookies" 
button [is] visually more prominent 
and distinct compared to the other 
two buttons [...]. This [...] creates a 
nudge [...] over the alternatives [with] 
privacy control. [...]

User Input

You are given a screenshot of a website 
and a taxonomy to detect deceptive 
designs. Your task is to follow the 
taxonomy and generate labels for each 
possible dark pattern present in the 
image and give a reasoning behind that 
choice.

Taxonomy:{...}

GPT 4.5

Figure 1: OpenAI’s GPT4.5 incorrectly identifies the color of the “Re-
ject All” button as being less prominent than the other, leading to an
incorrect classification of “nudge”. Similarly, Gemini 2.5 Pro incor-
rectly notes that the two buttons in the cookie notices are visually
distinct from each other, resulting in amisclassification of “nudge”.

navigating and mitigating online deceptive patterns. Such an auto-
mated tool must perform two primary tasks: 1) accurately identify
deceptive patterns and 2) precisely localize their position within
the website. The ability to both identify and localize these patterns
offers several benefits to web stakeholders. First, web users can
be alerted to deceptive patterns on websites they visit, enabling
informed decision-making. Second, regulators can leverage such
tools to identify deceptive patterns at scale, facilitating enforce-
ment and policy development. Third, developers can gain insights
into potentially problematic elements within their websites, pro-
moting more ethical design practices [66].

We propose an automated deceptive pattern detection frame-
work,AutoBot, to address these limitations.AutoBot accurately iden-
tifies and localizes the deceptive patterns from a screenshot of a
webpage. It does not rely on the underlying HTML code of the web-
page, which tends to be less stable than screenshots. HTML imple-
mentation and code can vary significantly across webpages and
even different accesses, while screenshots and text remain more
consistent [31]. AutoBot adopts a modular design, breaking down
the task into two distinct modules and leveraging existing state-
of-the-art models for each. Specifically, AutoBot utilizes a Vision
Module, which analyzes screenshots to accurately localize UI el-
ements, extracting essential features into a structured, text-only
format (ElementMap). It feeds this ElementMap to a Language Mod-
ule that employs a Large Language Model (LLM) to analyze the
ElementMap and assign a deceptive pattern based on a defined tax-
onomy (Section 2.1).

AutoBot’s design avoids the pitfalls of directly prompting Vi-
sion Large Language Model (VLLM) for end-to-end analysis.These
models, as we show in Figure 1, are known to hallucinate, leading
to false positives undermining their reliability [60]. Furthermore,
VLLMs currently lack the capability for accurate localization of UI
elements, as shown in recent works [17, 78] and in Section 4.4.2.
While fine-tuning VLLMs could potentially improve performance,
the substantial demand for large annotated datasets and significant
computing resources renders this approach impractical [7].

AutoBot leverages the capabilities of specialized vision models
to help with the localization task and utilizes LLMs to perform ac-
curate deceptive pattern identification. While LLMs have shown
strong performance in detecting deceptive patterns (see Section 5.3),
large-scale use of these LLMs might be prohibitive due to cost, la-
tency, and privacy concerns. In this work, we show how we can
create a synthetic dataset using an LLM as the ‘teacher’ and distill
its knowledge into smaller language models (SLMs), like Qwen2.5-
1.5B, and very small language models (vSLMs), like Flan-T5. We
show a detailed evaluation of these models in Section 5.3.

We demonstrate the practical applications ofAutoBot in three in-
stantiations, targeting different web stakeholders. First, we design,
and implement a browser extension (Section 7.1) using AutoBot to
automatically detect and highlight deceptive patterns on websites,
providing real-time user assistance on personal computers. Second,
we create a custom Lighthouse audit (Section 7.2) that leverages
AutoBot to inform developers of potential deceptive patterns on
their sites, integrating directly into developer workflows and pro-
viding a quantifiable score.Third, we demonstrate how researchers
and regulators can use AutoBot to perform a large-scale measure-
ment and analysis of the online deceptive patterns landscape (Sec-
tion 7.3). Our measurement on over 11,000 websites across popular
(Tranco) and e-commerce (Shopify) domains highlighted the preva-
lence of deceptive patterns, with many websites exhibiting several
patterns on a single webpage.

2 Background and Related Works
Web deceptive patterns refer to website interface design choices
that manipulate or deceive users into making decisions they might
not otherwisemake [10]. Examples of such patterns include hidden
costs, forced continuity, misdirection in e-commerce websites, and
privacy-invasive default settings in social media platforms. Here,
we present a filtered taxonomy to categorize web deceptive pat-
terns based on existing work. We also survey existing works on
detecting deceptive patterns on websites.

2.1 Taxonomy for Deceptive Patterns
Brignull et al. presented the first taxonomy of deceptive patterns
in 2010 [10]. Conti et al. expanded this taxonomy to include ‘ma-
licious interface designs’ [19]. Bösch et al. [9] introduced a simi-
lar taxonomy called ‘privacy dark patterns’, which included more
privacy-centric categories such as ‘Forced Registration’ and ‘Hid-
den Legalese Stipulations.’

More recently, Gray et al. [26] created a unified corpus to de-
tect deceptive designs in user interfaces, building on previous tax-
onomies and categories. Since then, various works have further
adapted the taxonomy for specific domains. For instance, Lewis
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Interface-Interference
➢ Confirmshaming
➢ Fake Scarcity/Fake Urgency
➢ Nudge

Forced Action
➢ Forced Action

Obstruction
➢ Pre Selection
➢ Visual Interference
➢ Jargon

Sneaking
➢ Hidden Subscription
➢ Hidden Costs
➢ Disguised Ads
➢ Trick Wording

Non-Deceptive
➢ Not-Applicable

Figure 2: Taxonomy of Deceptive Patterns. AutoBot classifies text
elements into five high-level deceptive pattern categories: Inter-
face Interference, Obstruction, Forced Action, Sneaking, and Non-
Deceptive.

et al. [36] codified deceptive patterns for mobile apps and games,
while Mathur et al. [43] adapted the taxonomy to focus on de-
ceptive patterns present in shopping websites. Work by Chen et
al. [16] and Mansur et al. [42] extended the taxonomy to detect
deceptive patterns in mobile and web apps. Although prior works
developed various taxonomies to classify deceptive patterns, these
efforts are inconsistent and often domain-specific. To address these
issues, Gray et al. [27] introduced a unified ontology of deceptive
patterns integrating past literature across regulatory reports and
academic works.

2.1.1 Filtered Taxonomy. Since our work, like others in literature,
focuses on detecting deceptive patterns at the page level, it ex-
cludes patterns that require the system to understand user action
across multiple pages over a period of time, such as ‘Sneak into
Basket’ – where items are sneakily added to users’ carts.

We classify deceptive patterns as either static (visible on page
render) or dynamic (requiring user interaction or time-based trig-
gers, e.g., ‘Nagging,’ ‘Hard-to-Cancel’). Since our systemuses screen-
shots, our analysis is limited to static patterns, as defined in Fig-
ure 2. Detecting dynamic patterns requires temporal analysis, which
is out of scope for this work. However, our system presents a build-
ing block for future systems to detect dynamic patterns by analyz-
ing webpage code, temporal activities, and performing actions.

Our taxonomywas created by filteringGray et al.’s ontology [27]
to focus on static deceptive patterns.The result is a taxonomy with
four high-level categories and 11 subtypes, as shown in Figure 2.
For our analysis, we utilize the textual descriptions of these sub-
types, adapted fromBrignull et al. [10], to prompt languagemodels,
as shown later. The complete taxonomy and its mapping to Gray
et al.’s work are provided in the extended report of this work [46].

2.2 Detecting Deceptive Patterns
Researchers developed several mechanisms to detect and measure
the prevalence of online deceptive patterns [4, 10, 16, 26, 42, 43,
52, 64, 72]. Curley et al. categorized earlier manual, automated, or
semi-automated detection mechanisms [22].

2.2.1 Human-based Manual Annotations. Early efforts to identify
online deceptive patterns relied on manual exploration. Brignull et
al. [10] manually explored the web to compile a “Hall of Shame”: a
list of websites with deceptive patterns. Gray et al. [26] expanded

this corpus by performing keyword searches on social media for
posts highlighting websites with deceptive patterns, which were
then manually validated. While highly accurate, this methodology
is limited to domain experts and lacks scalability due tomanual val-
idation requirements. To expedite the manual exploration process,
Mathur et al. [43] proposed a clustering-based pipeline to group
similar websites based on their text content, which is then manu-
ally inspected. Although this process accelerates data collection, it
still lacks scalability.

2.2.2 Probabilistic Text & Image Models. Attempts to automate
the manual inspection process include Tung et al.’s Naive Bayes
classifier [72], Soe et al.’s gradient-boosted tree to flag texts show-
casing deceptive patterns [64], and Adorna et al.’s combined Naive
Bayes classifier and VGG-19 model to identify deceptive designs in
cookie notices [4]. However, these works are often domain-specific
and cannot readily generalize to new domains. Additionally, most
works rely solely on text-based classifiers or heuristics, limiting
their ability to detect visual deceptive patterns, such as those based
on colors or trick wording.

2.2.3 Heuristic BasedMethods. Recentworks byChen et al., Mansur
et al., and Raju et al. [16, 42, 52] focus on automated detection of
deceptive patterns in mobile apps. Chen et al. [16] and Mansur et
al. [42] used predefined heuristics, limiting detection to simpler de-
ceptive patterns like disguised ads. Prior works used the HTML code
of websites to identify and detect deceptive patterns. For example,
Raju et al. [52] employed rule-based source code analysis to detect
patterns like ads, forced action, and nagging [52]. However, due
to the versatile and open nature of HTML, this task proves to be
very challenging. While HTML implementation and code vary sig-
nificantly across webpages, and even across different accesses of
the same page, screenshots and text remain more consistent. As a
result, recent approaches have moved completely towards text or
screenshots of websites to detect and identify deceptive designs.

2.2.4 ClassicalMLModels. In the broader domain of Privacy, Safety,
and Security (PSS), researchers have developed tools to help users
navigate specific deceptive designs onwebsites. For instance, works
by Khandelwal et al. [31, 32] enable users to find and adjust privacy
settings and automatically disable non-essential cookies. Similarly,
OptOutEasy by Kumar et al. [8] automatically finds opt-out links
from privacy policies and surfaces them to users. These domain-
specific approaches do not readily apply to deceptive pattern de-
tection as they require retraining for each deceptive pattern.

2.2.5 Large Language Models (VLLMs). Prior work have explored
using LLMs to detect deceptive patterns. Sazid et al. [56] used GPT-
3.5-Turbo to detect deceptive text with 92.57% accuracy, athough
their method is limited to singular text lines, only 7 types of pat-
terns, and ignores any surrounding visual or textual context. Sim-
ilarly, Schäfer et al. [57] utilized GPT-4o to remove deceptive el-
ements from synthetic HTML, reducing manipulativeness in 91%
of cases. This approach, however, is constrained due to the versa-
tile and non-standardized nature of HTML [67] and the challenge
of fitting inflated, real-world website source code into an LLM’s
context window.

More recently, a concurrent work with ours, Shi et al. [60], in-
troduces DPGuard to automatically detect deceptive patterns from
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screenshots of mobile apps and websites by directly prompting
VLLMs. We show later in Section 3 that VLLMs perform poorly in
detecting deceptive patterns from screenshots and are often prone to
hallucinations and false positives. Additionally, DPGuard only de-
tects the presence of these deceptive patterns without any posi-
tional reference. Our work identifies deceptive patterns with sig-
nificantly higher accuracy and extracts their positions, enabling
us to show users exactly where these patterns occur.

3 System Overview
This work presents AutoBot, an end-to-end framework that iden-
tifies the deceptive patterns and extracts their positions on a web-
page. After receiving a screenshot of a webpage, it identifies UI
elements on the page and feeds the identified elements along with
the associated text to an LLM. The output is a mapping of each
element to a corresponding deceptive pattern from Section 2.1.

Why Screenshots? Prior works analyzing websites [31, 32] have
primarily relied on HTML analysis. This approach faces significant
challenges due to the dynamic nature of websites. Websites in-
creasingly employ JavaScript frameworks that modify the Docu-
ment Object Model (DOM) on the fly, rendering static HTML analy-
sis insufficient. Furthermore, the diversity in the coding practices
and obfuscation techniques provide additional challenges in HTML-
based analyses. To address these challenges,AutoBot adopts a novel
approach focusing on the invariant aspect of websites: the user
experience. By leveraging the visual signals and associated text,
AutoBot models how users perceive and interact with websites.
This approach offers several advantages: (1) It is resilient to change
in underlying technologies as it captures the actual rendered con-
tent. (2) It allows us to analyze the same information that the user
encounters, providing a more accurate representation of the poten-
tial deceptive patterns.

Vision Large LanguageModels (VLLMs). Recent advances in VLLMs
offer a venue for analyzing screenshots and highlighting patterns
with proper prompting. To this end, we empirically evaluate the
effectiveness of GPT4.5 [3] and Gemini 2.5 Pro [68] in detect-
ing web deceptive patterns. Our experiments showed that while
these models can detect deceptive patterns, but they often halluci-
nate and give false positive answers. As shown in Figure 1, both
Gemini 2.5 Pro and GPT-4.5 struggle to identify the deceptive

patterns in screenshots. A recent work in this domain by Shi et
al. [60], DPGuard, uses these models directly to detect, not local-
ize, deceptive patterns. Consistent with Shi et al.’s evaluation, we
find that DPGuard faces performance issues, struggling to general-
ize over a variety of websites (refer to Section 6), achieving only a
macro score of 0.3452 in detecting deceptive patterns on websites.

In addition, VLLMs frequently struggle with the precise loca-
tion of elements in an input image [17, 37, 78], and cannot be
used to localize deceptive patterns out of the box. However, when
given bounding box coordinates, these models can effectively rea-
son about the spatial arrangements of objects [61].

Modules. AutoBot leverages the above insights to automatically
detect and localize deceptive patterns on websites, as shown in
Figure 3. It breaks the localization problem and deceptive pattern
detection into two tasks: vision and language. This breakdown al-
lows AutoBot to independently leverage vision techniques for the
precise localization of elements and powerful language models for
the accurate classification of patterns.

(1) Vision Module: The Vision Module maps a screenshot of a
webpage to a table of elements as shown in Figure 3. We re-
fer to this tabular representation as ElementMap.The ElementMap
contains the text associated with the element along with
its other features: element type, bounding box coordinates,
font size, background color, and font color. This module ad-
dresses the issues of high false positive rates and localiza-
tion by parsing the screenshot of a webpage.

(2) Language Module:The Language Module (Section 5) takes
the ElementMap as input and maps each element to a decep-
tive pattern from the taxonomy in Section 2.1. This module
reasons about each element considering its spatial context
and visual features. We explore different instantiations of
this module with different trade-offs in terms of cost, need
for training, and accuracy.

4 Vision Module
The Vision Module generates an ElementMap from a screenshot of
the website through the following three steps, as shown in Figure 3.

(1) Text Extraction: Extract the text, the bounding boxes of
the text, and the associated features from the screenshot.
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(2) Web-UI Element Detection: Localize UI elements, extract
their bounding boxes, and identify their types from the screen-
shot.

(3) ElementMap Generation: Merge the results of the above
steps into a tabular representation of thewebsite to generate
an ElementMap.

4.1 Text Extraction
The Text Extraction step starts by performing Optical Character
Recognition (OCR) on thewebsite screenshot.We employ theGoogle
Vision OCR API 3 as it has high accuracy in extracting text from
images of varying scales and resolutions.The API returns blocks of
detected text. We concatenate these blocks based on proximity to
form coherent text blocks.These blocks are a list of bounding boxes
with their respective text content. Then, we retrieve the font size,
font color, and background color of each bounding box, as illus-
trated in Figure 3. We calculate font size by subtracting the bottom
y-coordinate from the top y-coordinate of the bounding box. To
determine color information, we utilize the extcolors [14] package,
extracting the most prominent color (background) and the second
most prominent color (font).

This approach addresses a key limitation identified by Soe et
al. [64] in the previous ML methods: the lack of representation of
the UI richness that a user perceives, such as text placement and
contrast between the font and background colors. Our approach
captures these detailed text features, along with the relative loca-
tion of text elements on the website, providing a comprehensive
representation of the textual content experienced by users.

4.2 Web-UI Element Detection
The Web-UI Element Detection step uses the same screenshot to
identify and localize these 7 Web-UI Elements: buttons, checkboxes
( , ), radio buttons ( , ), and toggle switches ( , ). This
step provides context to the extracted text and enables a more com-
prehensive understanding of the webpage’s structure. For instance,
distinguishing between a clickable button and a static text block
can be significant, as a seemingly simple text might be a deceptive
call to action when recognized as a button. Similarly, identified
checkbox states (checked or unchecked) can reveal pre-selected
options that users might overlook.

In the following, we describe how we survey existing Web-UI
detection methods and the underlying datasets. As we find these
methods and datasets to not be appropriate for the deceptive pat-
terns detection task, we describe how we train a real-time Web-UI
Element Detector using YOLOv10 on a custom dataset.

Limitations of Existing Web-UI Detection Methods. While Web-
UI Element Detection is a well-studied problem, the existing ap-
proaches face several limitations in our deceptive pattern detection
task. Detectors like Ominparser 2 [40], Ferret UI 2 [38], UEID [76],
and Element Detector [75] do not distinguish between checked and
unchecked states. Detectors like UISketch [59] report low perfor-
mance on real-worldwebsites. ScreenRecognition [80] shows promise
for this step but was trained on mobile screenshots and is closed-
source, preventing its use or testing on websites.

3https://cloud.google.com/vision/docs/ocr

Limitations of Existing Web-UI Datasets. To improve the detec-
tor performance, we explored modifying existing datasets used to
train them. Omniparser 2 uses a manually annotated dataset of
popular websites, but the dataset is not public [40]. UEID [76] was
trained on the RICO Dataset [39], which contains manually anno-
tated mobile app UIs. We could not modify this dataset to train a
detector for webpages. Ferret UI 2 [38] and Element Detector [75]
use WebUI [75], a popular framework with 400k websites which
is publicly available, but the automatically computed labels from
accessibility trees4 are noisy and miss a lot of elements on a given
website [74, 75]. UISketch contains hand-drawn images to identify
Web-UI Elements based on their sketches and does not generalize
well to real-world websites [59].

4.2.1 Dataset Curation. We develop a novel approach to create a
diverse and representative dataset to address the lack of suitable
Web-UI Element Dataset for training our Web-UI Element Detector,
as shown in Figure 4. Instead of relying on manual scraping and
labeling [40, 59, 77, 80], we leverage AI-powered tools to generate
a synthetic dataset that reflects the current web landscape. Our
approach allows for precise control over element positioning and
labeling, which allows us to scale the dataset generation.

We generated 2.5K ideas for diverse websites using GPT-4 [3].
We passed these ideas to v05 (refer to our extended report [46] for
examples), an AI-based website generator, to generate three web-
sites per idea. v0 uses shadcn 6, a customizable UI-Library, which
allows us to get bounding boxes and the state (checked/unchecked)
of every UI element. Three members of the research team manu-
ally verified the 7.5K websites generated by v0. With a failure rate
of less than 2%, this process was relatively fast, as errors in web-
sites are detected by the compiler. These errors consisted mainly
of typos and missing libraries that the researchers manually fixed.
We then rendered each v0 generated website (7.5K) using random-
ized components from 6 popular UI-libraries, like Material UI and
Bootstrap7. This process resulted in 62K screenshots, where each
screenshot had a bounding box and a label for each UI element.
Recall that we have 7 labels for the UI elements. We refer to this
dataset as the Web-UI Elements Dataset.

4.2.2 Training Web-UI Element Detector. We use the Web-UI Ele-
ments Dataset to train an ensemble of YOLOv10 models. In partic-
ular, we randomly divide the dataset into a training set consisting
of 85% of the images and a validation set consisting of the remain-
ing 15%. We present the performance of the trained ensemble in
Section 4.4.2 on real-world websites.

Why YOLOv10? We adopt the YOLOv10 model (You Only Look
Once (YOLO) architecture [71], a real-time object detector for rec-
ognizing UI elements from a screenshot. We chose YOLOv10 over
Convolution Neural Networks (CNNs) [16, 31, 42] and VLLMs like
Molmo [23]. CNN-based detectors, such as Faster R-CNN [54], pro-
vide predictions with high accuracy, but require considerable com-
putational power and time [53, 54]. VLLMs, despite their strong ca-
pabilities in understanding image context, demonstrate significant

4Accessibility trees are generated using aria labels which developers have to op-
tionally add to a website.

5https://v0.dev/
6https://ui.shadcn.com/
7https://mui.com/material-ui/, https://getbootstrap.com/
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Figure 4: Pipeline of Generating Web-UI Element Dataset to train
YOLOv10. We used GPT-4 to generate 2.5K ideas (Idea Datasets),
which were then processed by v0 to create 7.5K websites (Synthetic
Website Dataset). After manually verifying these sites for rendering
errors and randomizing their UI library, we capture over 60K screen-
shots to train our YOLOv10 model.

limitations in image classification tasks [81], specifically object de-
tection tasks [79]. Evaluating Molmo [23] on detecting Web-UI Ele-
ments yielded poor results, as shown in Table 1. YOLO models are
comparatively lightweight, around 40MB, allowing for various de-
ployment options without requiring extensive compute resources.

Ensemble of YOLOv10. During training, we observed that YOLOv10
models could not distinguish between the 7 labels (first column of
Table 1) accurately.We attribute the reason to the labels being visu-
ally similar, such as a checked switch and a checked radio button.
As such, we trained three YOLOv10models, each focused on distin-
guishing between 2-3 different elements. The first model labeled
button and ; the second labeled , , and ; and the third la-
beled and .We found that each model performedmuch better
than one trying to handle all the classes at once. The same obser-
vation has been made in literature before for YOLO-based object
detection [44, 50, 70]. We combined the outputs of the three mod-
els by simply performing a union over the detected UI elements.
In case of overlap, we took the label with the higher confidence
classification. We refer to this detection method as the YOLOv10
Ensemble.

4.3 ElementMap Generation
The ElementMapGeneration stepmerges theWeb-UI Elements from
the Web-UI Element Detector with the text blocks from the Text Ex-
traction step. In particular, it iterates over each detected Web-UI
Element and applies spatial heuristics depending on the element
type to find themost likely text block corresponding to the element.
For example, buttons are matched based on overlap, while check-
boxes and radio buttons are paired with nearby text. The closest
matching text block is then relabeled with the element type. This
labeling results in an ElementMap, where each row contains an el-
ement label, the text, the bounding box coordinates, the font size,
the background color, and the font color. The Language Module
uses the ElementMap to detect the deceptive patterns on a page.

4.4 Vision Module Evaluation
We create a dataset to evaluate the real-world performance of the
YOLOv10 ensemble.

4.4.1 Vision Dataset. We curate a labeled dataset of UI elements
from the deceptive pattern websites dataset of Mathur et al. [43].
We manually annotated over 1.5K website screenshots using La-
bel Studio [69]. In particular, one author manually annotated each
screenshot by drawing bounding boxes around each UI element
and assigning it a type. The type is one the 7 Web-UI Elements: but-
tons, checkboxes ( , ), radio buttons ( , ), and toggle switches
( , ). Another author independently verified the annotations.
Both authors then discussed and resolved the conflicts in annota-
tions. We refer to this dataset as the Real-UI Dataset.

4.4.2 Vision Module Evaluation. We measure the accuracy of the
YOLOv10 ensemble of models on the Real-UI Dataset. We report
our results using the IoU metric, which measures the overlap be-
tween the predicted bounding box and the ground truth box by
dividing the area of their intersection by the area of their union.
A higher IoU indicates better localization accuracy, and we con-
sider a detection to be correct if the IoU exceeds 0.5 and the model
confidence exceeds 0.3. We choose a lower IoU threshold to ac-
count for the distribution shift between training on a synthetically
labeled dataset and a human-annotated one. The bounding boxes
from both will be different. Using a high IoU threshold would re-
sult in more false negatives, which would affect the subsequent
steps in AutoBot’s pipeline.

Table 1: Performance of the YOLOv10 Ensemble and Molmo [23] on
our Real-UI Dataset

Class Precision Recall F1-Score # Elements
YOLO Molmo YOLO Molmo YOLO Molmo

button 0.94 0.87 0.88 0.41 0.91 0.55 5226
0.85 0.97 0.95 0.47 0.89 0.63 113
0.98 0.92 0.76 0.44 0.86 0.60 246
0.85 0.86 0.93 0.29 0.89 0.43 76
0.86 0.84 0.89 0.35 0.87 0.49 132
0.96 0.96 0.98 0.42 0.97 0.59 52
0.91 0.93 0.94 0.47 0.93 0.63 34

Total 0.91 0.90 0.91 0.42 0.91 0.57 5879

Table 1 shows the F1-scores of our YOLOv10 Ensemble and
Molmo [23] for each of the 7 classes. We observe that the ensem-
ble outperforms Molmo for all the UI elements. Note that few-shot
prompting of local VLLMs is not possible for image inputs. The en-
semble exhibits a relatively lower performance on the unchecked
radio button and unchecked check box, because they look visually
similar to the other UI elements.

5 Language Module
The Language Module assigns a deceptive pattern (from the tax-
onomy in Section 2.1) to each element present in an ElementMap.
This is the input/output structure of the languagemodule as shown
in Figure 5.

5.1 Possible Solutions
Prior works have shown that LLMs [45] are suitable for reasoning
tasks similar to our task. These models fall into three categories:
1) large Language Models (LMs) like Gemini and GPT-4, 2) small
LMs such as Gemma and Qwen, and 3) very small LMs like T5. These

101



Automatically Detecting Online Deceptive Patterns CCS ’25, October 13–17, 2025, Taipei, Taiwan

i Text Element
Top

Coordinates
Bottom

Coordinates
Font
Size

Background
Color

Font Color

0
Accept all 
cookies

text (41, 33) (172, 53) 19
Picton Blue, 

(RGB: 69, 177, 232)
Black, 

(RGB: 0, 0, 0)

… … … … … … … …

n … … … … … … …

i
Deceptive
Category

Deceptive
Subtype

Reasoning

0 forced-action forced-action
No easy reject option;

must accept all or customize.

… … … …

n … … ….

ElementMap

Language ModuleClassification with Reasoning

Figure 5: The input and output structure of our language module.
The input ElementMap consists of key features of a web element,
and the output contains a deceptive category, subtype, and reason-
ing of classification.

models have varying capabilities and trade-offs, as described in Ta-
ble 2.
Table 2: Comparison of Language Models: Gemini vs Qwen2.5 vs T5

Feature Large LM Small LM Very Small LM

Size (parameters) Large (>200B) Medium (1.5B) Very Small (700M)
Context Window 1M 128K <1K
Deployment Cloud API only Can be run locally Can be run locally
Required Memory N/A ∼4.5 GB ∼700MB
License Proprietary Open Source Open Source
Latency Higher Medium Very low
Cost High Free Free
Data Privacy Data leaves device Data stays on device Data stays on device

5.1.1 Large Language Models (LLMs): LLMs are very effective at
performing a wide range of tasks [5, 21, 62] and are able to closely
follow user instructions [49, 82]. However, as shown in Table 2,
using these LLMs is cost-prohibitive and has potential data privacy
concerns8.

5.1.2 Small Language Models (SLMs): Unlike LLMs that follow
complex instructions when performing a task, SLMs often struggle
to do so. This limitation of SLMs can be overcome by fine-tuning
them on specific tasks, improving their performance to match that
of LLMs [41]. Moreover, as shown in Table 2, SLMs have two key
advantages over LLMs: 1) being compute efficient, they can be de-
ployed locally across a wide range of platforms, and 2) they allevi-
ate any data privacy concern associated with API based LLMs.

5.1.3 Very Small LanguageModels (vSLMs): SLMs, while compute-
efficient, are not the best solution to use in an extremely resource-
constrained platform, such as in-browser or on deviceswith no spe-
cialized GPU. In such environments, we can leverage vSLMs like
Flan-T5 [18]. Models like Flan-T5 need to be finetuned or distilled
from LLMs for specific tasks to achieve high accuracy [29]. We
show the detailed distillation steps we performed in Section 5.2.4.

In summary, we observe that large LMs, such as Gemini, are
considerably effective in detecting deceptive patterns from an

8https://www.traceable.ai/2023-state-of-api-security

ElementMap. However, as described in Table 2, utilizing such large
and closed-source models presents challenges like high usage cost,
considerable latency, and potential data-privacy concerns as the
ElementMap is sent to an external service. Smaller LMs such as
Qwen and T5 address these challenges and have been shown to per-
form well on such specific tasks after finetuning [29, 41].

5.2 Our Solution
To combine the strengths of large and small LMs, we adopt a dis-
tillation approach where we use large LMs as teachers and small
LMs as students to complete our task. Specifically, we create a syn-
thetic dataset of deceptive pattern classification from ElementMap
using Gemini. We then use this dataset to distill smaller student
models, i.e., Qwen and T5. As such, AutoBot comprises three lan-
guage models to detect deceptive patterns, each presenting differ-
ent trade-offs as described in Table 2.

5.2.1 Prompting the LLM. We utilize proven techniques like
Chain-of-Thought (CoT) [73], few-shot prompting [13], and
prompting the model to reason about its classification [28, 45, 48]
to help the model understand the task and identify deceptive pat-
terns. Specifically, our system prompt, 𝑃system9, provides the LLM
with a plan on how to detect deceptive patterns and instructs the
LLM to generate three columns — Deceptive Category, Deceptive
Subtype, and Reasoning — for each element in the ElementMap, as
shown in Figure 5. This prompt allows us to not only generate pre-
cise labels and the associated reasoning but also minimize hallu-
cinations. An added benefit of generating the classification with
‘Reasoning’ is that we can use these ‘rationales’ to further train
smaller LMs. This Distilling Step-by-Step methodology has been
shown to be very effective by Hsieh et al. [29].

During our initial evaluation of Gemini 1.5 Pro, using 𝑃system,
we observed that the model could identify all deceptive patterns
in the ElementMap, but would often mis-classify ‘non-deceptive’
patterns as deceptive, resulting in a high false positive rate and
a low precision score. To address this problem, we utilized the
Gemini 2.0-Flash-Thinking reasoning model. Reasoning mod-
els have shown promising results in being able to reason about
a task [41, 48]. We prompted the LLM to re-evaluate the elements
identified as deceptive and correct misclassifications9. Next, we uti-
lized the Gemini 2.0-Flash-Thinking model to re-verify the labels
on every website with one or more elements classified as deceptive.
This additional step in generating the labels, significantly reduced
the number of false positives we observed. We note that we do not
use this model as our base model because of its limited availability,
making it infeasible to be used at scale.We show that this approach
results in high precision and recall in Section 5.3.

5.2.2 Creating Distillation Dataset. We create 𝒟distill by scraping
and analyzing 11K websites from the Tranco list [51]. We filter
out non-English websites using the langdetect library [63] and
adult websites using the NudeNet package [47], leaving us with
6,626 websites. For these websites, a significant portion was non-
deceptive or had very few deceptive patterns. To increase websites
with deceptive patterns, we opted to look at e-commerce websites,

9Please find the system prompt under Files here: https://osf.io/tha2d/?view_
only=4fd2116fa2e94c99857679eddfea5937
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as these websites tend to have deceptive patterns [43]. As such, we
analyze an additional 4,492 featuredwebsites from Shopify Partners
Directory10.

Overall, we have 11,118 websites in our dataset. We runAutoBot
on these websites, using the Gemini 1.5 Pro and Gemini 2.0
Flash-Thinking models. To reduce randomness and have deter-
ministic outputs, we limit the 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0 and 𝑡𝑜𝑝𝑝 = 0.1 [55].
We incorporate the final classification and reasoning produced by
AutoBot in 𝒟distill. The distribution of samples (a sample is defined
as a single row of the ElementMap) is shown in Table 3.

Table 3: Distribution of Samples in 𝒟distill.

Category Subtype # Samples

Non Deceptive Not Applicable 160934
Forced Action Forced Action 3403

Interface Interference
Nudge 1335
Fake Scarcity / Fake Urgency 933
Confirmshaming 428

Obstruction Visual Interference 689
Pre-Selection 234

Sneaking
Trick Wording 904
Hidden Costs 233
Hidden Subscription 3495
Disguised Ads 5980

5.2.3 Distilling Small Language Models (Qwen2.5-1.5B). Deep-
ScaleR [41] has shown that small language models (SLMs) fine-
tuned for specific tasks are able to mirror the performance of
larger models on those same tasks. Using this insight, we dis-
till a Qwen2.5-1.5B model to be able to mimic Gemini’s perfor-
mance at detecting deceptive patterns. We use the 𝒟distill dataset
to perform full-finetuning of the Qwen2.5-1.5B model. As shown
in Table 3, the distribution of samples in the distillation dataset
is highly imbalanced, with over 92% of the samples being ‘non-
deceptive’. Training on such an imbalanced dataset may introduce
bias towards the majority class [34]. To mitigate such bias, we per-
form Random Under Sampling of the ‘non-deceptive’ class, which
has shown to improve performance [24], to achieve a more bal-
anced distribution of about 55% ‘non-deceptive’ samples. Our dis-
tilled version of Qwen2.5-1.5B was trained on 34.7M tokens on 4
Nvidia-A6000 GPUs for 2 epochs. We present the performance of
the trained SLM in Section 5.3.

5.2.4 Distilling Very Small Language Models (T5): To distill the
knowledge from LLMs into very small language models like T5,
we use and improve the paradigm introduced by Hsieh et al. [29].
We split 𝒟distill into 90% training and a 10% validation set grouped
by the sites from which the samples were extracted. This ensures
that samples from the same site are not present in training and
testing sets. We formally define the training dataset, 𝐷train, as:

𝑑𝑖 ∈ 𝐷train ⊂ 𝒟distill (1)
𝑑𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑟𝑖) (2)

where 𝐷train is a subset of the balanced 𝒟distill from Section 5.2.3.
Here, 𝑥𝑖 represents the input to classify, 𝑦𝑖 represents the deceptive

10https://www.shopify.com/partners/directory

design category, 𝑧𝑖 represents the deceptive design subtype, and 𝑟𝑖
represents the associated reasoning for the category and subtype.
Since, the contextwindowof T5 is significantly smaller than that of
SLMs and LLMs, for each web element that is to be classified, 𝑥𝑖, we
provide its neighboring web elements, in a sliding window fashion:
𝑥𝑖−1→𝑖−𝑛 to 𝑥𝑖+1→𝑖+𝑛 . For the distillation task, we used 𝑛 = 4.

Baseline Approach. Based on this initial methodology, we train a
T5model, 𝑓 , on a multi-task problem: predict the deceptive design
category, subtype as the label, and reasoning as the rationale. We
use the task-specific prefix [classify] to generate the label and
[reason] for the reasoning.

We define the model and loss functions as:

𝑓 (𝑥, 𝑡) = {( ̂𝑦𝑖 ⊕ ̂𝑧𝑖), if 𝑡 = [category]

̂𝑟𝑖, if 𝑡 = [reason]
(3)

ℒ = ℒlabel + 𝛼ℒreason (4)

Here, ℒlabel and ℒreason are the label prediction loss and reason
generation loss, respectively, and are defined as:

ℒlabel = 1
𝑁

𝑁
∑
𝑖=1

ℓ(𝑓 (𝑥𝑖, 𝑡category), 𝑦𝑖 ⊕ 𝑧𝑖) (5)

ℒreason = 1
𝑁

𝑁
∑
𝑖=1

ℓ(𝑓 (𝑥𝑖, 𝑡reason), 𝑟𝑖), (6)

where ℓ is the cross entropy loss between the predicted and target
tokens, and ⊕ is a string concatenation function.

Each web element that is to be classified, 𝑥𝑖, is provided along-
side its neighboring web elements, 𝑥𝑖−1→0 to 𝑥𝑖+1→𝑁 . The model’s
performance is measured as the exact match of its [category] out-
puts with the ground truth data. An example of the model’s sample
input and expected output is shown below.

Input Sample

Input: [category]: Line 14,Preferences,checked check-
box,...</s>Line 10,"MAGIC We use cookies to personalise
...</s>Line 11,COMING SOON ,text,...</s>

Output: obstruction,pre-selection

Input: [reason]: Line 14,Preferences,checked check-
box,...</s>Line 10,"MAGIC We use cookies to personalise
...</s>Line 11,COMING SOON ,text,...</s>

Output: Cookie banner option is pre-selected to indicate users to allow
extra cookies.

After training T5 on the 𝒟distill dataset for 2 epochs , we ob-
served the training accuracy to saturate to ~48%. Here, accuracy
refers to the correct prediction of both category and sub-types.

Our Approach: To overcome the low accuracy in the baseline ap-
proach, we split the labeling task into two separate tasks: category
and subtype, introducing an additional “task prefix” [subtype] for
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the new task. We redefine the model and loss function to:

𝑓 (𝑥, 𝑡) = {
̂𝑦𝑖, if 𝑡 = [category]

̂𝑧𝑖, if 𝑡 = [subtype]

̂𝑟𝑖, if 𝑡 = [reason]

(7)

ℒ = 𝛼(ℒcategory + ℒsubtype) + (1 − 𝛼)ℒreason, (8)

where 𝛼 is a tuning factor.
By separating label into category and subtype in addition to

the reason tasks, the model can learn the relation between the cat-
egory and the subtype and how they both relate to the reasoning.
A sample of the new inputs and expected outputs is shown below.

Input Sample

Input: [category]: Line 14,Preferences,checked check-
box,...</s>Line 10,"MAGIC We use cookies to personalise
...</s>Line 11,COMING SOON ,text,...</s>

Output: obstruction

Input: [subtype]: Line 14,Preferences,checked check-
box,...</s>Line 10,"MAGIC We use cookies to personalise
...</s>Line 11,COMING SOON ,text,...</s>

Output: pre-selection

Input: [reason]: Line 14,Preferences,checked check-
box,...</s>Line 10,"MAGIC We use cookies to personalise
...</s>Line 11,COMING SOON ,text,...</s>

Output: Cookie banner option is pre-selected to indicate users to allow
extra cookies.

After training the T5 model on the new loss function and tasks
using the same ground truth dataset and the same number of
epochs, we observe the test accuracy of detecting deceptive pat-
terns saturate to ∼95%. We present these results in the following
section.

5.3 Language Module Evaluation
We create a dataset to evaluate the real-world performance of the
different models in the language module.

5.3.1 Language Dataset. To evaluate the Language Module of our
pipeline, we curate a dataset, referred to as LangEval dataset. In
particular, we randomly choose 200 websites from the D3 Dataset
(in particular the Mathur et al. portion) described in Section 6.1.
Next, for these 200 websites, one of the authors manually anno-
tated the UI element classifications in the ElementMap to provide
ground truth UI labels. Thus, the LangEval dataset contains the
manually labeled ElementMap of each website associated with the
manually labeled deceptive patterns.

5.3.2 Evaluating Language Models. We evaluate the various lan-
guage models discussed in this section on the LangEval dataset.
The performance is shown in Table 4. We report the performance
of the language models in two ways:

1. Binary Classification: This metric assesses models’ ability to de-
tect whether a UI element is deceptive, regardless of the spe-
cific categorization. We use this metric as it provides a perfor-
mance measure while considering the inherent subjectivity of
deceptive pattern classification – an element classified as ‘trick-
wording’ could also be classified as ‘hidden-cost’. This classifi-
cation is provided at the bottom of each evaluation table, with
labels: “Deceptive” and “Non-Deceptive”.

2. Class-wise Classification:This is the detailed classification result,
across categories and subtypes, between the ground truth data
and the model-generated result.

Table 4: Performance of different models in LanguageModule on
LangEval. The table has three sections, each showing performance
at the category, subtype, and binary levels

Pattern Type Precision Recall F1-Score

Gemini Qwen T5 Gemini Qwen T5 Gemini Qwen T5

C
at
eg

or
y

Non Deceptive 1.00 0.98 1.00 0.99 0.99 0.93 0.99 0.98 0.96
Forced Action 0.89 0.85 0.84 0.79 0.83 0.86 0.84 0.84 0.85
Interface
Interference 0.85 0.79 0.51 0.85 0.55 0.69 0.85 0.65 0.59

Obstruction 0.53 0.49 0.17 0.91 0.95 1.00 0.67 0.64 0.29
Sneaking 0.87 0.73 0.50 0.96 0.71 0.84 0.91 0.72 0.63

Su
bt
yp

e
Not Applicable 1.00 0.98 0.99 0.99 0.99 0.89 0.99 0.98 0.94
Confirmshaming 0.80 0.90 0.86 0.80 0.82 1.00 0.80 0.86 0.92
Disguised Ads 0.76 0.58 0.33 0.96 0.58 0.73 0.85 0.58 0.46
Fake Scarcity /
Fake Urgency 0.96 0.91 0.61 0.93 0.63 0.76 0.95 0.75 0.68

Forced Action 0.89 0.85 0.78 0.79 0.83 0.88 0.84 0.84 0.82
Hidden Costs 0.60 - 0.05 0.60 - 0.20 0.60 - 0.08
Hidden
Subscription 0.90 0.78 0.56 0.95 0.72 0.77 0.92 0.75 0.64

Nudge 0.74 0.57 0.17 0.80 0.37 0.68 0.77 0.45 0.28
Pre-Selection 0.67 0.65 0.33 1.00 1.00 1.00 0.80 0.79 0.50
Trick Wording 0.86 0.61 0.34 0.80 0.61 0.47 0.83 0.61 0.39
Visual
Interference 0.50 0.36 0.06 0.83 0.80 1.00 0.62 0.50 0.11

Deceptive 0.89 0.84 0.65 0.95 0.80 0.95 0.92 0.82 0.77
Not Deceptive 1.00 0.98 0.99 0.99 0.99 0.95 0.99 0.98 0.97

These results highlight the trade-offs between the different lan-
guage models. As expected, Gemini exhibits the highest perfor-
mance, reaching near perfect precision and recall on most decep-
tive patterns. It struggles in two pattern subtypes: hidden-costs
and visual interference. In second place is the Qwen model, which
struggles in more subtypes. The distilled T5 model exhibits gener-
ally acceptable performance, but struggles for pattern categories:
interface-interference and obstruction.

6 End-to-End Evaluation
We perform an end-to-end evaluation of AutoBot on a real-world
dataset, consisting of 1.1K websites, manually annotated by 2 au-
thors (described in Section 6.1).We perform our evaluation with all
three LLMs in the LanguageModule (see Section 5.1). For this End-
to-End Evaluation, our objective is to measure the accuracy of our
entire framework (including the vision and language models) in
detecting deceptive patterns on websites.

6.1 Dataset
To create the dataset for the end-to-end evaluation, we crawl the
websites in the deceptive pattern dataset from Mathur et al. [43].
We use this dataset since it is the latest and most comprehensive
dataset of websites with deceptive patterns. We filter out the non-
English and offline websites from this dataset, leaving us with 555
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websites out of the 1400 sites mentioned. Next, we crawled the
top 1000 websites from the Tranco [51] list11, utilizing the same
methodology in Section 5.2.2 to filter out non-English and NFSW
websites, resulting in 597 websites. Additionally, for the Tranco
websites, we queried “site:domain” on DuckDuckGo and program-
matically counted the number of interactable elements for each of
the top ten resulting pages. The page with the highest count was
selected for analysis. In total, we have 1152 websites in our end-to-
end evaluation dataset.

Next, we manually labeled the screenshots of these websites
to identify and localize the deceptive patterns, associating each
screenshot with an ElementMap. Specifically, two authors anno-
tated the same randomly selected 100 websites with high inter-
annotator agreement (𝜅 = 0.89) [33]. Then, each researcher sep-
arately labeled the rest of the screenshots. We refer to this dataset
as the golden Deceptive Design Dataset (D3 dataset). We show the
distribution of the samples in D3 Dataset in Table 5.

Table 5: Distribution of Samples in D3 Dataset.

Category Subtype # Samples

Non Deceptive Not Applicable 22618
Forced Action Forced Action 414

Interface Interference
Nudge 143
Fake Scarcity / Fake Urgency 211
Confirmshaming 42

Obstruction Visual Interference 48
Pre-Selection 18

Sneaking

Trick Wording 190
Hidden Costs 28
Hidden Subscription 379
Disguised Ads 306

6.2 Findings
We analyze the websites in the D3 Dataset using AutoBot and com-
pare the predicted deceptive patterns to the ground truth annota-
tions.

The results from the evaluation are shown in Table 6. We ob-
serve that the performance of the AutoBot framework is mainly
dependent on the type of language model used. We note here that
Gemini is the teacher model in our framework, and Qwen and T5
are the student models, as described in Section 5.1. As such, we see
that Gemini has the best performance, followed by Qwen and T5.

We also evaluate Shi et al.’s [60] DPGuard framework. To evalu-
ate their framework, we first create amapping between their taxon-
omy and the filtered taxonomy (refer to our extended report [46]).
For our evaluation, we only consider the categories mappable to
the filtered taxonomy. Additionally, as the DPGuard framework
does not provide localization capabilities, our evaluation is solely
focused onDPGuard’s ability to identify deceptive patterns present
within the webpage in our D3 Dataset. Our evaluation shows that
DPGuard is unable to identify deceptive patterns with high ac-
curacy, especially struggling to classify ‘hidden-subscription’ and
‘trick-wording’. These findings are consistent with the evaluation
performed by Shi et al. [60].

11https://tranco-list.eu/list/QGJ74/1000000

6.2.1 Error Analysis. In the end-to-end evaluation, we observe
that, overall, Gemini performs extremely well in identifying decep-
tive patterns. However, for certain subtypes, it has comparatively
lower performance. For instance, Gemini has reduced performance
in identifying ‘pre-selection’. Similarly, for ‘disguised-ads’, it has
a slightly higher false positive rate. Further analysis shows that
these false positives aremainly due to product placement: typically
benign content resembling deceptive advertising. For instance, a
website showcasing template-based shopping apps may include
screenshots of user-created apps, some of which contain promo-
tional text. Although harmless, this text is often misclassified as
‘disguised-ads’ due to its advertising-like appearance. Furthermore,
through empirical analysis, we have observed Gemini interchange-
ably using ‘nudge’ and ‘forced-action’, especially when classifying
cookie notices.

For the smaller models, Qwen and T5, we observe that the
AutoBot sometimes fails to identify deceptive pattern categories/-
subtypes correctly. Investigating the error cases further, we find in-
stances where AutoBot misclassified the category or sub-category
of the deceptive pattern (while correctly identifying that the pat-
tern is deceptive). For example, there are instances where AutoBot
incorrectly identifies forced-action as nudge. We also find that on
Wikipedia, AutoBot incorrectly tags a non-deceptive pattern as de-
ceptive. The classification text contains money or cost-related text,
causing the model to classify the text as trick-wording incorrectly.

6.2.2 Impact of Errors. We note that the impact of the misclassi-
fications due to category or sub-category mismatch is minimal on
the users as the users will still be notified of a deceptive pattern.
For false positives, the user gets notified for a pattern where none
exists. Upon further inspection, users can safely ignore the notifi-
cation, causing minimal distraction. For false negatives - the user
impact can be severe. In such cases, users might get into a sense of
false security and get deceived by the deceptive pattern because of
AutoBot’s error. We emphasize that high recall of AutoBot ensures
that such cases will be minimal.

7 Applications
We instantiate theAutoBot framework across three potential down-
stream tasks, each designed to serve a stakeholder in the web
ecosystem: users, developers, and regulators and researchers.

7.1 Browser Extension for Web Users
Our first instantiation is a browser extension that directly helps
web users, the primary target of deceptive patterns. The extension
takes a screenshot of the user’s active page and analyzes it using
the AutoBot framework. The active page may contain sensitive in-
formation of the user. To mitigate data privacy concerns, the ex-
tension performs the analysis locally using a distilled version of
Flan-T5 Section 5.2.4. Once processed, the extension highlights
deceptive patterns to the users as shown in Figure 6. Specifically,
it shows bounding boxes around the UI elements where deceptive
patterns are found, and informs the users as they hover over ele-
ments.
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Table 6: Performance of AutoBot (with three underlying language models: Gemini, Qwen, and T5) and DPGuard [60] on the D3 Dataset. The
table has three sections, each showing performance at the category, subtype, and binary levels.

Pattern Type Precision Recall F1‑Score

Gemini Qwen T5 DPGuard [60] Gemini Qwen T5 DPGuard [60] Gemini Qwen T5 DPGuard [60]

C
at
eg

or
y Non Deceptive 1.00 0.98 1.00 – 0.99 0.99 0.96 – 0.99 0.99 0.98 –

Forced Action 0.97 0.89 0.82 – 0.94 0.85 0.83 – 0.95 0.87 0.82 –
Interface Interference 0.89 0.76 0.55 – 0.95 0.64 0.78 – 0.92 0.69 0.64 –
Obstruction 0.70 0.57 0.13 – 0.97 0.71 0.93 – 0.81 0.63 0.23 –
Sneaking 0.87 0.79 0.52 – 0.94 0.73 0.85 – 0.90 0.76 0.64 –

Su
bt
yp

e

Not Applicable 1.00 0.98 1.00 0.78 0.99 0.99 0.91 0.74 0.99 0.99 0.95 0.76
Confirmshaming 0.93 0.75 0.59 0.05 1.00 0.69 0.85 0.32 0.97 0.72 0.70 0.09
Disguised Ads 0.74 0.62 0.34 0.49 0.95 0.61 0.81 0.62 0.83 0.61 0.48 0.55
Fake Scarcity / Fake Urgency 0.94 0.87 0.68 – 0.96 0.71 0.89 – 0.95 0.78 0.77 –
Forced Action 0.97 0.89 0.72 0.40 0.94 0.85 0.84 0.51 0.95 0.87 0.77 0.45
Hidden Costs 0.77 0.31 0.14 – 0.91 0.28 0.38 – 0.83 0.29 0.21 –
Hidden Subscription 0.93 0.84 0.51 – 0.96 0.72 0.83 – 0.95 0.78 0.63 –
Nudge 0.79 0.52 0.10 0.23 0.89 0.43 0.48 0.58 0.83 0.47 0.17 0.33
Pre-Selection 0.64 0.64 0.25 0.02 0.94 0.94 1.00 0.14 0.76 0.76 0.40 0.03
Trick Wording 0.85 0.74 0.57 0.00 0.82 0.69 0.67 0.00 0.83 0.71 0.62 0.00
Visual Interference 0.73 0.54 0.03 0.09 0.98 0.62 0.93 0.22 0.84 0.58 0.05 0.13
Deceptive 0.90 0.88 0.72 – 0.97 0.81 0.95 – 0.93 0.84 0.82 –
Not Deceptive 1.00 0.98 0.97 – 0.99 0.99 0.97 – 0.99 0.99 0.98 –

–: the DP classification is not supported by the model.

(a) Screenshot of a website. (b) Screenshot of AutoBot running on
browser and detecting deceptive pat-
terns.

Figure 6: Screenshot of website (left) and AutoBot running (right).

Extension Architecture. The browser extension utilizes a hybrid
architecture consisting of lightweight browser components with a
locally running Flask server to run theAutoBot framework, similar
to the Zotero extension [20]. On the browser side, we use a popup
script to allow users to activate the extension. Once active, the ex-
tension takes a screenshot and sends it to the local Flask server
for analysis. The Flask server hosts the AutoBot framework, using
Flan-T5 as the language model. After analysis, the server returns
the classifications to the extension, which are then rendered by the
content script of the extension on the user’s screen.This rendering
is shown in Figure 6.

System Level Performance. For the browser extension to be prac-
tical, it must perform its analysis in real time. We, therefore, con-
ducted latency tests on its core Flan-T5 (Language) and YOLOv10
Ensemble (Vision) models using three different machine configu-
rations representing various hardware capabilities (modern high-
end with GPU, older mid-range, ARM-based) and comparing CPU
versus GPU performance. Our results (refer to our extended report
[46] for detailed measurements) show that while performance on

older hardware using only the CPU takes roughly 1.5 to 3 sec-
onds per module (e.g., 1.95 seconds for YOLOv10 Ensemble on a
CPU-only i5 laptop), newer devices with GPUs achieve near real-
time performance. Specifically, on the 2023 laptop with a GPU, T5
inference (with 800 tokens as input) took less than 0.5 seconds,
and YOLOv10 Ensemble performed its classifications in less than
0.3 seconds. Our experiments show the feasibility of implement-
ing AutoBot as a browser extension, as modern hardware with
GPU support enables a responsive experience without major per-
formance delays [2, 30].

7.2 Lighthouse Reports for Web Developers

Figure 7: Custom Audit on a Lighthouse Report.

Research shows that while developers are often unaware of de-
ceptive patterns on their websites and their impacts on users, they
are open to addressing these patterns if properly informed [66].
To that end, we integrate AutoBot into Lighthouse 12 [25], a pop-
ular tool developers use to receive automated audits on website

12https://chromewebstore.google.com/detail/lighthouse/
blipmdconlkpinefehnmjammfjpmpbjk
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quality. Google bundles this tool with ChromeDev Tools, and ma-
jor platforms such as Shopify, Wix, and Squarespace13 integrate it
into their workflows. We created a custom Lighthouse audit using
AutoBot to fit directly into a web developer’s workflow. This audit
uses an existing Lighthouse Gatherer 14 to capture screenshots
of the website, processes it using AutoBot, and finally incorporates
the findings into a Lighthouse report, as shown in Figure 7.

We package Lighthouse with our custom audit in a docker con-
tainer for better usability. The docker container maintains all func-
tionality of Lighthouse while adding our custom audit. The con-
tainer simply takes an URL as input to run the entire audit and give
the developer a report. The report provides the developer with De-
ceptivePattern Score based on the number of deceptive patterns (𝑛)
found on the page using the following scoring scheme:

𝑆(𝑛) = {
100, if 𝑛 = 0
89, if 𝑛 = 1
max(100 − 10𝑛, 0), if 𝑛 > 1

The scoring scheme scales inversely with the number of decep-
tive patterns. It assigns a score of 0.89 for a single deceptive pattern
to ensure that the audit shows a failure condition. An example of
the Lighthouse Report as a developer would see is shown in Fig-
ure 7.

7.3 Enabling Web-Scale Analysis
Our last instantiation of the AutoBot framework is a tool designed
for scalable website analysis. This tool serves researchers and reg-
ulators, providing them with the necessary automated capabilities
to investigate the broader landscape of online deceptive practices.
It takes input from a list of URLs. Then, it crawls each URL, takes
a screenshot, extracts the ElementMap from each screenshot, and
passes the ElementMap to the Language Module. We use the Gem-
ini model with batch API in this tool to generate accurate analysis
at a low cost.

Measurement on Shopify and Tranco Websites. We use this tool
to analyze 11,118 websites, consisting of 6,626 diverse, popular do-
mains selected from the Tranco list [51], and 4,492 e-commerce
sites from the Shopify Partners Directory15. We detail our website
selection process earlier in Section 5.2.2.

The complete distribution of the identified deceptive patterns
across the two domains is in Figure 8. We observe that sneak-
ing is the most prevalent deceptive pattern across both domains.
On Shopify websites, the second prevalent is interface-interference.
For example, e-commerce websites tend to use fake scarcity or
urgency (e.g., “Limited time offer: get 20% off for next 5 min”),
which is classified as fake-scarcity-fake-urgency. On Tranco web-
sites, forced-action is the nextmost prevalent pattern after sneaking.
Our analysis also reveals that many websites employ multiple dis-
tinct categories of deceptive patterns simultaneously. For example,
bedbathandbeyond.com (refer to our extended report [46]) consists
of ‘forced-action’ (by providing no clear option to reject cookies)

13https://www.shopify.com/, https://www.wix.com/, https://www.squarespace.
com/

14https://github.com/GoogleChrome/lighthouse/blob/main/core/gather/
gatherers/full-page-screenshot.js

15https://www.shopify.com/partners/directory

alongside ‘obstruction’ (by presenting mailing list terms and condi-
tions in an excessively small font).
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(b) Distribution of Deceptive Patterns identified by AutoBot on
Shopify Websites

Figure 8: Distribution of deceptive patterns across various domains
such as (a) Most visited Tranco websites and (b) Shopify based e-
commerce websites

8 User Studies
We conducted two evaluations: a website usability evaluation to
assess the effects of highlights on a website, and a developer out-
reach program where we contacted Shopify developers to discuss
their site’s Lighthouse report (see Section 7.3).

8.1 Website Usability Evaluation
We conducted a website usability test with prototyped websites to
evaluate how highlighting deceptive patterns affects website us-
ability. We recruited 151 U.S.-based participants from Prolific, who
were compensated $2 for a task that took a median of 7 minutes
to complete. We did not collect demographic data but instructed
Prolific to ensure an even distribution across its demographic cat-
egories. Our institution’s IRB determined this study does not con-
stitute research involving human subjects under DHHS and FDA
regulations.

8.1.1 Study Design. We conducted a within-subjects study in
which participants visited two custom-madewebsites. One version
featured highlighted deceptive patterns to simulate our browser
extension, while the other did not. After each interaction, partici-
pants completed a System Usability Scale (SUS) questionnaire [12].
On each site, participants performed one of four tasks: signing
up, downloading a file, shopping for an item, or reading a news
article. When a participant hovered over highlighted text, a ban-
ner appeared, cautioning them about the deceptive pattern. These
custom websites were based on real-world examples from UXP2
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Dark Patterns16(refer to our extended report [46] for examples).
Participants interacted with them directly, without installing a
browser extension. After the tasks, participants answered a post-
study questionnaire asking if: (1) the hints about deceptive patterns
were useful, (2) the highlights helped them notice the patterns, and
(3) the highlights influenced their choice.

8.1.2 Findings. AWilcoxon signed-rank test of the SystemUsabil-
ity Scale (SUS) scores revealed no statistically significant differ-
ence in usability between websites with and without highlights
(𝑝 = 0.106), supporting our null hypothesis. However, we observe
a 2-point higher mean SUS score for the highlighted website. Par-
ticipant feedback showed that most found the highlights (65.5%)
and hints (56.3%) helpful for recognizing deceptive patterns, and
38% reported that the highlights would influence their behavior.

8.1.3 Future Studies. Our findings suggest that highlighting de-
ceptive patterns can help users recognize them without compro-
mising the website’s usability. However, our evaluation did not
measure the impact of highlights on user behavior. Future work
should address this limitation in two key areas. First, studies
should explore how the highlights influence user choice and pref-
erences. Second, a real-world evaluation using different versions
of the AutoBot browser extension is needed to assess the practi-
cal trade-offs between its performance, usability, and utility. These
studies could involve participants installing the extension and pro-
vide feedback based on their experience on real websites.

8.2 Developer Outreach
We analyzed 4,492 Shopify websites (see Section 7.3) and gener-
ated Lighthouse reports for each. Next, we contacted the develop-
ers with the Lighthouse reports of their website and informed them
about the deceptive patterns found on their site.

8.2.1 Notification Process. To choose the websites to analyze and
the developers to contact, we start by crawling the Shopify Part-
ners Directory to identify developers and their most popular web-
sites. Next, we analyzed these sites for deceptive patterns (see
Section 7.3), generated a custom Lighthouse report for each one,
and emailed the developers to inform them of potential deceptive
patterns on their sites and get their feedback on the Lighthouse
reports. Specifically, we asked them four questions: (1) Was the
report useful? (2) Would they like more or less information in-
cluded? (3) In light of the report, would they be willing to make
any changes? and (4) Would they be interested in a tool to run this
analysis on their entire website?

8.2.2 Ethical Consideration. In our emails, we identified ourselves
as researchers developing a system to automatically detect decep-
tive patterns. We explained that our goal was to inform them of
potential deceptive patterns on their sites and understand their
perspective on the generated Lighthouse reports, and clarified that
participation was optional and no personally identifiable informa-
tion (PII) was being collected. Because no PII was collected, our
institution’s IRB certified this outreach as “not human subject re-
search,” exempting it from requiring prior consent.

16https://darkpatterns.uxp2.com/

8.2.3 Outcome. 3 developers replied to our emails. Two develop-
ers indicated that removing DPs was an owner-level decision be-
yond their authority. The third respondent cited customer reten-
tion as the reason for not implementing changes.

9 Limitations
Scope of Detectable Patterns. A limitation for AutoBot comes

from the static UI analysis. Our approach inherently restricts the
scope of detectable deceptive patterns to those visually present on
a single page at a given time. Deceptive patterns such as nagging
cannot be detected through this approach, and thus, we filter Gary
et. al.’s taxonomy [27] to focus on static deceptive patterns.

Hardware Constraints. Another practical limitation arises due to
hardware limitations associated with deploying AutoBot’s exten-
sion using T5. The model requires approximately 1GB of memory,
which might not be easily available on older devices. Furthermore,
our experiments show that while near-real-time latency is achiev-
able on modern hardware, the lack of GPU acceleration can signif-
icantly affect latency.

Multilingual Support. AutoBot’s is currently limited to English-
only websites due to the presence of language-specific datasets in
the distillation pipeline. However, we note that it is possible to ex-
tend AutoBot to other languages by using a multi-lingual language
models, and curating a language specific distillation dataset.

YOLOv10 Ensemble Label Set. Finally, the YOLOv10 Ensemble is
limited to identifying only a set of 7 common UI elements. Other
interactive elements prevalent on modern websites, such as sliders
and date pickers, are not explicitly recognized by the model. While
this could potentially reduce the contextual information available
to the Language Module, we have empirically observed that decep-
tive patterns rarely use other interactive UI elements.

10 Future Work
AutoBot is a framework that takes a screenshot and returns local-
ized deceptive patterns. We provide three sample applications that
build on top of it. We envision that applications like lighthouse-
ci17 can easily extend our work to integrate AutoBot into devel-
oper CI/CD workflows. Regulators can also use AutoBot with mod-
els aligned to their regulations to enforce policies automatically.

Another direction for future work is to enhance AutoBot’s
multilingual capabilities. While deceptive patterns are language-
agnostic, the current framework’s training and evaluation datasets
were focused on English-language websites. Future efforts could
explore language-specific versions of the LanguageModule or inte-
grate advanced LLMs that can reason across multiple languages.

Lastly, we also envision using AutoBot as a tool to generate
large-scale datasets of websites with elements automatically la-
beled for deceptive patterns. A significant bottleneck for finetun-
ing/retraining a VLLM for this task is the lack of large-scale an-
notated training data. Datasets created using AutoBot can be uti-
lized to overcome this challenge and potentially improve the per-
formance of VLLMs in detecting deceptive patterns in the future.

17https://github.com/GoogleChrome/lighthouse-ci
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11 Conclusion
In this paper, we introduce AutoBot, a framework to automatically 
detect deceptive patterns on websites. AutoBot employs a  modu-
lar approach: first, it captures a screenshot of the website and pro-
cesses it using the Vision Module to provide a textual representa-
tion of the website (ElementMap). It then analyzes the ElementMap 
using a Language Module to identify deceptive patterns and their 
type. We evaluate AutoBot on a dataset of real-world websites to 
demonstrate its accuracy in identifying and localizing deceptive 
patterns. We t hen i nstantiate A utoBot i n t hree s ettings: a user-
facing browser extension, a developer-facing Lighthouse report, 
and a researcher/regulator-facing website analysis tool.
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